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Abstract

We investigate the family of intersection graphs of low density objects in low dimensional Eu-
clidean space. This family is quite general, includes planar graphs, and in particular is a subset of
the family of graphs that have polynomial expansion.

We present efficient (1 + ε)-approximation algorithms for polynomial expansion graphs, for
Independent Set, Set Cover, and Dominating Set problems, among others, and these results seem to
be new. Naturally, PTAS’s for these problems are known for subclasses of this graph family. These
results have immediate interesting applications in the geometric domain. For example, the new
algorithms yield the only PTAS known for covering points by fat triangles (that are shallow).

We also prove corresponding hardness of approximation for some of these optimization problems,
characterizing their intractability with respect to density. For example, we show that there is no
PTAS for covering points by fat triangles if they are not shallow, thus matching our PTAS for this
problem with respect to depth.

1. Introduction

Many classical optimization problems are intractable to approximate, let alone solve. Motivated by
the discrepancy between the worst-case analysis and real-world success of algorithms, more realistic
models of input have been developed, alongside algorithms that take advantage of their properties. In
this paper, we investigate approximability of some classical optimization problems (e.g., set cover and
independent set, among others) for two closely-related families of graphs: Graphs with polynomially-
bounded expansion, and intersection graphs of geometric objects with low-density.

1.1. Background

1.1.1. Optimization problems

Independent set. Given an undirected graph G = (V,E), an independent set is a set of vertices
X ⊆ V such that no two vertices in X are connected by an edge. It is NP-Complete to decide
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Objects Approx. Alg. Hardness

Disks/pseudo-disks PTAS [MRR14b]
Exact version NP-Hard
[FG88]

Fat triangles of same size O(1) [CV07]
APX-Hard: Lemma 4.4.1p22

I.e., no PTAS possible.

Fat objects in R2 O(log∗ opt) [AdBES14] APX-Hard: L4.4.1

Objects ⊆ Rd, O(1) density
E.g. fat objects, O(1) depth.

PTAS: Theorem 3.4.1
Exact version NP-Hard
[FG88]

Objects with polylog density QPTAS: Theorem 3.4.1
No PTAS under ETH
Lemma 4.6.1p25

Objects with density ρ in Rd PTAS: Theorem 3.4.1
RT: nO(ρ(d+1)/d/εd).

No (1 + ε)-approx
with RT npoly(log ρ,1/ε)

assuming ETH: L4.6.1

Figure 1.1: Known results about the complexity of geometric set-cover. The input consists of a set of
points and a set of objects, and the task is to find the smallest subset of objects that covers the points.
To see that the hardness proof of Feder and Greene [FG88] indeed implies the above, one just needs to
verify that the input instance their proof generates has bounded depth. A QPTAS is an algorithm that
has running time nO(poly(logn,1/ε)).

if a graph contains an independent set of size k [Kar72], and one cannot approximate the size of the
maximum independent set to within a factor of n1−ε, for any fixed ε > 0, unless P = NP [H̊as96].

Dominating set. Given an undirected graph G = (V,E), a dominating set is a set of vertices D ⊆ V
such that every vertex in G is either in D or adjacent to a vertex in D. It is NP-Complete to decide if a
graph contains a dominating set of size k (by a simple reduction from set cover, which is NP-Complete
[Kar72]), and one cannot obtain a c log n approximation (for some constant c) unless P = NP [RS97].

1.1.2. Graph classes

Density. Informally, a set of objects in Rd is low-density if no ball can intersect too many objects
that are larger than it. This notion was introduced by van der Stappen et al. [SOBV98], although
weaker notions involving a single resolution were studied earlier (e.g. in the work by Schwartz and
Sharir [SS85]). A closely related geometric property to density is fatness. Informally, an object is fat if
it contains a ball, and is contained inside another ball, that up to constant scaling are of the same size.
Fat objects have low union complexity [APS08], and in particular, shallow fat objects have low density
[Sta92].

Intersection graphs. A set F of objects in Rd induces an intersection graph GF having F as its the
set of vertices, and two objects f, g ∈ F are connected by an edge if and only if f ∩ g 6= ∅. Without any
restrictions, intersection graphs can represent any graph. Motivated by the notion of density, a graph is
a low-density if it can be realized as the intersection graph of a low-density collection of objects in low
dimensions.

There is much work on intersection graphs, from interval graphs, to unit disk graphs, and more.
The circle packing theorem [Koe36, And70, PA95] implies that every planar graph can be realized as a
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coin graph, where the vertices are interior disjoint disks, and there is an edge connecting two vertices
if their corresponding disks are touching. This implies that planar graphs are low density. Miller et al.
[MTTV97] studied the intersection graphs of balls (or fat convex object) of bounded depth (i.e., every
point is covered by a constant number of balls), and these intersection graphs are readily low density.
Some results related to our work include: (i) planar graphs are the intersection graph of segments
[CG09], and (ii) string graphs (i.e., intersection graph of curves in the plane) have small separators
[Mat14].

Polynomial expansion. The class of low-density graphs is contained in the class of graphs with
polynomial expansion. The class of graphs with polynomial expansion was defined by Nešetřil and
Ossona de Mendez as part of a greater investigation on the sparsity of graphs (see the book [NO12]). A
motivating observation to their theory is that sparsity of a graph (the ratio of edges to vertices) is not
necessarily sufficient for tractability. For example, a clique (with maximum density) can be disguised as
a sparse graph by splitting every edge by a middle vertex. Furthermore, constant degree expanders are
also sparse. For both graphs, many optimization problems are intractable (intuitively, because they do
not have a small separator).

Bounded expansion graphs are nowhere dense graphs [NO12, Section 5.4]. Grohe, Kreutzer and
Siebertz recently showed that first-order properties are fixed-parameter tractable for nowhere dense
graphs [GKS14]. In this paper, we study graphs of bounded expansion [NO12, Section 5.5], which
intuitively requires a graph to not only be sparse, but have shallow minors that are sparse as well.

1.1.3. Further related work

There is a long history of optimization in structured graph classes. Lipton and Tarjan first obtained a
PTAS for independent set in planar graphs by using separators [LT79, LT80]. Baker [Bak94] developed
techniques for covering problems (e.g. dominated set) on planar graphs. Baker’s approach was extended
by Eppstein [Epp00] to graphs with bounded local treewidth, and by Grohe [Gro03] to graphs excluding
minors. Separators have also played a key role in geometric optimization algorithms, including a PTAS
for independent set and (continuous) piercing set for fat objects [Cha03], a PTAS for piercing half-spaces
and pseudo-disks [MR10], a QPTAS for maximum weighted independent sets of polygons [AW13, AW14,
Har14], and a QPTAS for Set Cover by pseudodisks [MRR14a], among others. Lastly, Cabello and Gajser
[CG14] develop PTAS’s for some of the problems we study in the specific setting of minor-free graphs.

1.2. Our results

We systematically study the class of graphs that have low density, first proving that they have polynomial
expansion. We then develop approximation algorithms for this broader class of graphs, as follows:

(A) PTAS for independent set for graphs with hereditary separators. For graphs that have
sublinear hereditary separators we show PTAS for independent set, see Section 3.1. This covers
graphs with low density and polynomial expansion. These results are not surprising in light of
known results [CH12], but provide a starting point and contrast for subsequent results.

(B) PTAS for packing problems. The above PTAS also hold for packing problems, such as finding
maximal induced planar subgraph, and similar problems, see Example 2.3.1 and Lemma 3.1.3.

(C) PTAS for independent/packing when the output is sparse. More surprisingly, one get
a PTAS even if the subgraph induced on the union of two solutions has polynomial expansion.
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Objects Approx. Alg. Hardness

Disks/pseudo-disks PTAS [MR10]
Exact version NP-Hard
via point-disk duality [FG88]

Fat triangles of similar size. O(log log opt) [AES10] APX-Hard: Lemma 4.2.1p20

Objects with O(1) density. PTAS: Theorem 3.4.1p19 Exact ver. NP-Hard [FG88]

Objects polylog density. QPTAS: Theorem 3.4.1
No PTAS under ETH
Lemma 4.6.1 / L4.2.1

Objects with density ρ in Rd PTAS: Theorem 3.4.1
run time nO(ρ(d+1)/d/εd)

No (1 + ε)-approx
with RT npoly(log ρ,1/ε)

assuming ETH: L4.6.1

Figure 1.2: Known results about the complexity of discrete geometric hitting set. The input is a set of
points, and a set of objects, and the task is to find the smallest subset of points such that any object is
hit by one of these points.

Thus, while the input may not be sparse, as long as the output is sparse, one can get an efficient
approximation algorithms, see Theorem 3.2.1.

In particular, this holds if the output is required to have low density, because the union of
two sets of objects with low density is still low density. The resulting algorithms in the geometric
setting are faster than those for polynomial expansion graphs, by using the underlying geometry of
low-density graphs.

(D) PTAS for dominating set. Low density graphs remain low density even if one merges locally
objects that are close together, see Lemma 2.1.12. More generally, if one consider a collection of
t-shallow subgraphs (i.e., graphs with edge distance radius t) of a polynomial expansion graph, then
their intersection graph also has polynomial expansion, as long as no vertex in the original graph
participates in more than constant number of subgraphs.

This surprising property implies that local search algorithms provides a PTAS for problems like
Dominating Set for graphs with polynomial expansion, see Section 3.3.

(E) PTAS for multi-cover dominating set with reach constraints. These results can be extended
multi-cover variants of dominating set for such graphs, where every vertex can be asked to be
dominated a certain number of times, and require that the these dominated vertices are within a
certain distance. See Lemma 3.3.10.

(F) Connected dominating set. The above algorithms also extend to a PTAS for connected domi-
nating set, see Section 3.3.6.

(G) PTAS for vertex cover for graphs with polynomial expansion. See Observation 3.3.13.

(H) PTAS for geometric hitting set and set cover. The new algorithms for dominating sets read-
ily provides PTAS’s for discrete geometric set cover and hitting set for low density inputs, see
Section 3.4.

(I) Hardness of approximation. The low-density algorithms are complimented by matching hard-
ness results that suggest our approximations are nearly optimal with respect to depth (under SETH:
the assumption that SAT over n variables can not be solved in better than 2n time).

The context of our results, for geometric settings, is summarized in Figure 1.1 and Figure 1.2.
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Paper organization. We describe low-density graphs in Section 2.1 and prove some basic properties.
Bounded expansion graphs are surveyed in Section 2.2. Section 3 present the new approximation al-
gorithms. Section 4 present the hardness results. Conclusions are provided in Section 5. Appendix A
contains some proofs that are provided for the sake of completeness.

2. Preliminaries

2.1. Low-density graphs

Definition 2.1.1. For a graph G = (V,E), and any subset X ⊆ V , let G|X denote the induced subgraph
of G over X. Formally, we have G|X =

(
X,
{
uv
∣∣ u, v ∈ X, and uv ∈ E

})
.

Definition 2.1.2. Consider a set of objects U . The intersection graph of U , denoted by GU , is the
graph having U as its set of vertices, and an edge between two objects f, g ∈ U if they intersect; that
is, formally GU =

(
U ,
{
fg
∣∣ f, g ∈ U and f ∩ g 6= ∅

})
.

One of the two main thrusts of this work is to investigate the following family of graphs.

Definition 2.1.3. A set of objects U in Rd (not necessarily convex or connected) has density ρ if any
ball b intersects at most ρ objects in U with diameter larger than the diameter of b. The minimum such
quantity is denoted by density(U). If ρ is a constant, then U has low density .

Any graph that can be realized as the intersection graph of a set of objects U in Rd with density ρ
is ρ-dense . The class of all graphs that are ρ-dense and are induced by objects in Rd is denoted by Cdρ .

Definition 2.1.4. A graph G is k-degenerate if any subgraph of G has a vertex of degree at most k.

Observation 2.1.5. A ρ-dense graph is (ρ−1)-degenerate (with degree ρ−1 attained by the object with
smallest diameter). Thus, a ρ-dense graph with n vertices has at most (ρ− 1)n edges.

2.1.1. Fatness and density

For α > 0, an object g ⊆ Rd is α-fat if for any ball b with a center inside g, that does not contain g,
we have vol(b ∩ g) ≥ α vol(b) [BKSV02]¬. A set F of objects is fat if all its members are α-fat for some
constant α. A collection of objects U has depth k if any point in the underlying space lies in at most k
objects of U . The depth index of a set of objects is a lower bound on the density of the set, as a point
can be viewed as a ball of radius zero. The following is well known, and we include a proof for the sake
of completeness.

Lemma 2.1.6. A set F of α-fat convex objects in Rd with depth k has density k2d/α. In particular, if
α, k and d are bounded constants, then F has bounded density.

Proof: Let b = b(p, r) be any ball in Rd, and consider an α-fat object g ∈ U that intersects b and has
diam(g) > diam(b) = 2r.

¬There are several different, but roughly equivalent, definitions of fatness in the literature, see de Berg [dB08] and
the followup work by Aronov et al. [AdBES14] for some recent results. In particular, our definition here is what de Berg
refers to as being locally fat.
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A ball b(q, r) centered at a point q that is in g ∩ b does not contain g,
as diam(b(q, r)) < diam(g). As such, by the definition of α-fatness, we have
vol
(
b(q, r)

)
≥ vol

(
b(q, r) ∩ g

)
≥ α vol

(
b(q, r)

)
= α vol(b). Furthermore, b(q, r) is

contained in the ball b′ = b(p, 2r), and as such

vol
(
b′ ∩ g

)
≥ vol

(
b(q, r) ∩ g

)
≥ α vol(b) =

α

2d
vol(b′).

pr

q g

b′
b

Each point in b′ can be covered by at most k objects of U , and each large object intersecting b covers
a α/2d-fraction of b′. Therefore, there at most k2d/α objects in U that intersect g with diameter larger
than 2r.

Definition 2.1.7. A metric space X is a doubling space if there is a universal constant cdbl > 0 such
that any ball b of radius r can be covered by cdbl balls of half the radius. Here cdbl is the doubling
constant , and its logarithm is the doubling dimension .

In Rd the doubling constant is cd = 2O(d), and the doubling dimension is O(d) [Ver05], making the
doubling dimension a natural abstraction of the notion of dimension in the Euclidean case.

Lemma 2.1.8. Let U be a set of objects in Rd with density ρ. Then, for any α ∈ (0, 1), a ball b = b(c, r)
can intersect at most ρcd

dlg 1/αe objects of U with diameter ≥ 2rα, where lg = log2 and cd is the doubling
constant of Rd.

Proof: Cover b by the minimum number of balls of radius ≤ αr. By the definition of the doubling
constant, the number of balls needed is cd

dlog2 1/αe. Each of these balls, by definition of density, can
intersect at most ρ objects of U of diameter larger than 2rα, which implies the claim.

The density definition can be made to be somewhat more flexible, as follows.

Lemma 2.1.9. Let β > 1 be a parameter, and let U be a collection of objects in Rd such that, for any
r, any ball with radius r intersects at most ρ objects with diameter ≥ 2rβ. Then U has density cd

dlg βeρ.

Proof: Let b be a ball with radius r. We can cover b with cd
dlg βe balls with radius r/β. Each (r/β)-radius

ball can intersect at most ρ objects with diameter larger than 2(r/β)β = 2r, so b intersects at most
cd
dlg βeρ objects with diameter larger than 2r = diam(b).

2.1.2. Minors of objects

Definition 2.1.10. A graph G is t-shallow (or alternatively has graph radius t) if there is a vertex
h ∈ V (G), such that for any vertex u ∈ V (G) there is a path π that connects h to u, and π has at most
t edges. The vertex h is a center of G, denoted by h = center(G).

Let U and V be two sets of objects in Rd. The set V is a minor of U if it can be obtained by
deleting objects and replacing pairs of overlapping objects f and g (i.e., f ∩ g 6= ∅) with their union
f ∪ g. Consider a sequence of unions and deletions operations transforming U into V . Every object
g ∈ V corresponds to a set of objects of C(g) ⊆ U , such that ∪h∈C(g)h = g. The set C(g) is a cluster
of objects of U .

Surprisingly, even for a set F of fat and convex shapes in the plane with constant density, their
intersection graph GF can have arbitrarily large cliques as minors (see Figure 2.1). Note that the
clusters in Figure 2.1 induce intersection graphs with large graph radius.
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(A) (B) (C) (D) (E)

Figure 2.1: (A) and (B) are two low-density collections of n2 disjoint horizontal slabs, whose intersection graph
(C) contains n rows as minors. (D) is the intersection graph of a low-density collection of vertical slabs that
contain n columns as minors. In (E), the intersection graph of all the slabs contain the n rows and n columns
as minors that form a Kn,n bipartite graph, which in turn contains an n + 1 vertex clique minor.

Definition 2.1.11. For sets of objects U and V , if V is a minor of U , and the intersection graph of each
cluster of U is t-shallow, then V is a t-shallow minor of U .

The following lemma shows that there is a simple relationship between the depth of a shallow minor
of objects and its density.

Lemma 2.1.12. Let U be a collection of objects with density ρ in Rd, and let V be a t-shallow minor
of U . Then V has density at most tO(d)ρ.

Proof: Every object g ∈ V has its associated cluster C(g) ⊆ U . These sets are disjoint, and let P =
{C(g) | g ∈ V} be the induced partition of U into clusters (it can also be a partition of a subset of U).
Next, consider any ball b = b(c, r), and suppose that g ∈ V intersects b and it has diameter at least 2r,
and let C(g) ∈ P be its cluster, and H = GC(g) be its associated intersection graph. By assumption H
has (graph) diameter ≤ t.

Now, let h be any object in C(g) that intersect b, let dH denote the shortest path metric of H (under
the number of edges), and let h′ be the object in C(g) closest to h (under dH), such that diam(h′) ≥ 2r/t
(if there is no such object then the diameter of diam(g) < t(2r/t) ≤ 2r, which is a contradiction).

Consider the shortest path π ≡ h1, . . . , hm between h = h1 and h′ = hm in H, where m ≤ t. Observe
that, for i = 1, . . .m − 1, diam(hi) < 2r/t, and thus the distance between b and h′ is bounded by∑m−1

i=1 diam(hi) ≤ (m−1)2r/m < 2r. We refer to h′ as the representative of g, denoted by rep(g) ∈ C(g).

Now, let H =
{

rep(g) ∈ U
∣∣∣ g ∈ V , diam(g) ≥ 2r, and g ∩ b 6= ∅

}
. The representatives in H are all

unique, each is of diameter ≥ 2r/t, all of them intersect b(c, 3r), and they all belong to U , a set of density
ρ. Lemma 2.1.8 implies that |H| ≤ ρcd

dlg te. Since cd = 2O(d), see [Ver05], it follows that |H| = tO(d),
implying the claim.

2.2. Graphs with polynomial expansion

Let G be an undirected graph. A minor of G is a graph H that can be obtained by contracting edges,
deleting edges, and deleting vertices from G. If H is a minor of G, then each vertex v of H corresponds
to a cluster – a connected set C(v) of vertices in G – based on the edges contraction. The graph H is
a t-shallow minor (or a minor of depth t) of H, where t is an integer, if for each vertex v ∈ V (H),
the induced subgraph GC of the corresponding cluster C = C(v) is t-shallow (see Definition 2.1.10). Let
∇t(H) denote the set of all graphs that are minors­ of H of depth t.

­I.e., these graphs can not legally drink alcohol.
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Definition 2.2.1 ([NO08a]). The greatest reduced average density of rank r, or just the r-shallow den-

sity , of G is the quantity dr(G) = sup
H∈∇r(G)

|E(H)|
|V (H)|

.

Definition 2.2.2. The expansion of a graph class C is the function f : N → N ∪ {∞} defined by
f(r) = supG∈C dr(G). The class C has bounded expansion if f(r) is finite for all r. Specifically,
a class C with bounded expansion has polynomial expansion (resp., subexponential expansion or
constant expansion) if f is bounded by a polynomial (resp., subexponential function or constant) . The
polynomial expansion is of order k if f(x) = O(xk). Naturally, a graph G has polynomial expansion of
order k if it belongs to a class of graphs with polynomial expansion of order k.

Observation 2.2.3. If a graph G has bounded expansion, then G has average degree at most µ, where
µ = d1(G)/2 = O(1), as the graph G is its own 1-shallow minor, where every vertex is its own cluster.
In particular, the vertex v0 with minimum degree has degree at most µ. Removing v0 from G leaves
a graph G0 that is also a 1-shallow minor of G, and therefore contains a second vertex v1 with degree
at most µ. Continuing this process, we see that the graph G, by virtue of its bounded expansion, is
O(1)-degenerate (see Definition 2.1.4).

As an example of a class of graph with constant expansion, observe that planar graphs have constant
expansion because a minor of a planar graph is planar and by Euler’s formula, every planar graph
is sparse. More surprisingly, Lemma 2.1.12 together with Observation 2.1.5 implies that low-density
graphs have polynomial expansion.

Lemma 2.2.4. Let ρ > 0 be fixed. The graph class Cdρ of ρ-dense graphs in Rd has polynomial expansion

bounded by f(t) = ρtO(d).

2.2.1. Separators

Definition 2.2.5. Let G = (V,E) be an undirected graph. Two sets X, Y ⊆ V are separate in G if
(i) X and Y are disjoint, and (ii) there is no edge between the vertices of X and Y in G. A set Z ⊆ V
is a separator for a set U ⊆ V , if |Z| = o(|U |), and U \ Z can be partitioned into two separate sets X
and Y , with |X| ≤ (2/3) |V | and |Y | ≤ (2/3) |V |®.

Nešetřil and Ossona de Mendez showed that graphs with subexponential expansion have subexponential-
sized separators. For the simpler case of polynomial expansion, we have the following.

Theorem 2.2.6 ([NO08b, Theorem 8.3]). Let C be a class of graphs with polynomial expansion of
order k. For any graph G ∈ C with n vertices and m edges, one can compute, in O

(
mn1−α log1−α n

)
time, a separator of size O

(
n1−α log1−α n

)
, where α = 1/(2k + 2).

For the sake of completeness, a proof is provided in Appendix A.1. This result is well known, and we
simply retrace the calculations of [NO08b] for polynomial f instead of subexponential f . Theorem 2.2.6

yields a sublinear separator for low-density graphs of sizeO
(

(ρ2n log n)
1− 1

O(log cdbl)

)
.Geometric arguments

give a somewhat stronger separator. For the sake of completeness, we provide a proof in the appendix
of the following result, but we emphasize that it is essentially already known [MTTV97, SW98, Cha03].

®Here, the choice of 2/3 is arbitrary, and any constant smaller than 1 is sufficient.
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Lemma 2.2.7 (Proof in Appendix A.2). Let U be a set of n objects in Rd with density ρ > 0 (see
Definition 2.1.3p5), and let k ≤ n be some prespecified number. Then, one can compute, in expected
O(n) time, a sphere S that intersects O

(
ρ+ ρ1/dk1−1/d

)
objects of U . Furthermore, the number of objects

of U strictly inside S is at least k − o(k), and at most O(k). For k = O(n) this results in a balanced
separator.

2.2.2. Divisions

Consider a set V . A cover of V is a set W =
{
Ci ⊆ V

∣∣ i = 1, . . . , k
}

such that V =
⋃k
i=1Ci. A set

Ci ∈ W is a cluster . A cover of a graph G = (V,E) is a cover of its vertices. Given a cover W , the
excess of a vertex v ∈ V that appears in j clusters is j − 1. The total excess of the cover W is the
sum of excesses over all vertices in V .

Definition 2.2.8. A cover C of G is a λ-division if (i) for any two clusters C,C ′ ∈ C, the sets C \ C ′
and C ′ \C are separated in G (i.e., there is no edge between these sets of vertices in G), and (ii) for all
clusters C ∈ C, we have |C| ≤ λ.

A vertex v ∈ V is an interior vertex of a cover W if it appears in exactly one cluster of W (and
its excess is zero), and a boundary vertex otherwise. By property (i), the entire neighborhood of an
interior vertex of a division lies in the same cluster.

The p having λ-divisions is slightly stronger than being weakly hyperfinite. Specifically, a graph is
weakly hyperfinite if there is a small subset of vertices whose removal leaves small connected compo-
nents [NO12, Section 16.2]. Clearly, λ-divisions also provide such a set (i.e., the boundary vertices).
The connected components induced by removing the boundary vertices are not only small, but the
neighborhoods of these components are small as well.

As noted by Henzinger et al. [HKRS97], strongly sublinear separators obtain λ-divisions with total
excess εn for λ = poly(1/ε). Such divisions were first used by Frederickson in planar graphs [Fre87].
For the sake of completeness, we provide a proof of the following well-known result.

Lemma 2.2.9 (Proof in Appendix A.3). Let G be a graph with n vertices, such that any induced
subgraph with m vertices has a separator with O(mα logβm) vertices, for some α < 1 and β ≥ 0. Then,

for ε > 0, the graph G has λ-divisions with total excess εn, where λ = O
((
ε−1 logβ ε−1

)1/(1−α)
)
.

Corollary 2.2.10. (A) Let G be a graph with polynomial expansion of degree k and n vertices, and let
ε > 0 be fixed. Then G has O

(
(1/ε)2k+2 log2k+1(1/ε)

)
-divisions with total excess εn.

(B) Let G = (V,E) be a ρ-dense graph with n vertices arising out of a given set of objects in Rd.
Then G has λ-divisions, with λ = O

(
ρ/εd

)
and total excess at most εn. This division can be computed

in O(n log(n/λ)) time.

Proof: (A) By Theorem 2.2.6, C has separator with parameters α = 1 − 1/(2k + 2) and β = 1 −
1/(2k+2). Plugging this into Lemma 2.2.9 implies λ-divisions where λ = O

((
(1/ε) logβ(1/ε)

)1/(1−α)
)

=

O
(
(1/ε)2k+2 log2k+1(1/ε)

)
.

(B) By Lemma 2.2.7, any subgraph of G with m vertices has a separator of size ≤ c
(
ρ+ ρ1/dm1−1/d

)
,

for some constant c. Arguing as in Lemma 2.2.9, one can break up G in a a recursive fashion until each
portion has size m such that c

(
ρ+ ρ1/dm1−1/d

)
≤ εm/c′, where c′ is some absolute constant. As can be

easily verified, this holds for m = Ω
(
ρ/εd

)
. Setting λ = m implies that the resulting λ-divisions with

excess ≤ en.

9



As for the running time, computing the separator for a graph with m vertices takes expected O(m)
time (assuming basic operation like deciding if an object intersects a sphere can be done be done in
constant time), using the algorithm of Lemma 2.2.7.

2.3. Hereditary and mergeable properties

Let Π ⊆ 2V be a property defined over subsets of vertices of a graph G = (V,E) (e.g., Π is the set of all
independent sets of vertices in G). The property Π is hereditary if for any X ⊆ Y ⊆ V , if Y satisfies
Π, then X satisfies Π. The property Π is mergeable if for any X, Y ⊆ V that are separate in G, if X
and Y each satisfy Π, then X ∪ Y satisfies Π. We assume that whether or not X ∈ Π can be checked
in polynomial time.

Given a set F and a property Π ⊆ 2F, the packing problem associated with Π, asks to find the
largest subset of F satisfying Π.

Example 2.3.1. Some geometric flavors of packing problems that corresponds to hereditary and mergeable
properties include:

(A) Given a collection of objects U , find a maximum independent subset of U .
(B) Given a collection of objects U , find a maximum subset of U with density at most ρ, where ρ is

prespecified.
(C) Find a maximum subset of U whose intersection graph is planar or otherwise excludes a graph

minor.
(D) Given a point set P , a constant k, and a collection of objects U , find the maximum subset of U

such that each point in P is contained in at most k objects in U .

3. Approximation algorithms

3.1. Approximation algorithms using separators

Graphs whose induced subgraphs have sublinear and efficiently computable separators are already strong
enough to yield PTAS for mergeable and hereditary properties (see Section 2.3 for relevant definitions).
Such algorithms are relatively easy to derive, and we describe them as a contrast to subsequent results,
where such an approach no longer works. As the following testifies, one can (1 − ε)-approximate, in
polynomial time, the independent set in a low-density or polynomial-expansion graphs (as independent
set is a mergeable and hereditary property).

Lemma 3.1.1. Let G = (V,E) be a graph with n vertices, with the following properties:

(A) Any induced subgraph of G on m vertices has a separator with O(mα logβm) vertices, for some
constants α < 1 and β ≥ 0, and this separator can be computed in polynomial time. (I.e., low
density and polynomial expansion graphs have such separators.)

(B) There is a hereditary and mergeable property Π defined over subsets of vertices of G.
(C) The largest set O ∈ Π, is of size at least n/c, where c is some absolute constant.

Then, for any ε > 0, one can compute, in O
(
nO(1) + 2λλO(1)n

)
time, a set X ∈ Π such that |X| ≥

(1− ε) |O|, where λ = O
((
ε−1 logβ ε−1

)1/(1−α)
)
.

Proof: Set δ = ε/2c. By the algorithmic proof of Lemma 2.2.9, one can compute a λ-division for G in
polynomial time, such that its total excess is E ≤ δn ≤ εn/2c ≤ ε |O| /2, where λ is as stated above.
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Throw away all the boundary vertices of this division, which discards at most 2E ≤ ε |O| vertices. The
remaining clusters are separated from one another, and have size λ. For each cluster, we can find its
largest subset with property Π by brute force enumeration in O

(
2λλO(1)

)
time per cluster. Then we

merge the sets computed for each cluster to get the overall solution. Clearly, the size of the merged set
is at least |O| − 2E ≥ (1− ε) |O|. The overall running time of the algorithm is O

(
nO(1) + 2λλO(1)n

)
.

Example 3.1.2 (Largest induced planar subgraph). Consider a graph G = (V,E) with n vertices and with
polynomial expansion of order k. Assume, that the task is to find the largest subset X ⊆ V , such that
the induced subgraph G|X is, say, a planar graph. Clearly, this property is hereditary and mergeable,
and checking if a specific induced subgraph is planar can be done in linear time [HT74].

By Observation 2.2.3, the graph G is t-degenerate, for some t = O(1), since G has a polynomial
expansion. Consequently, G contains an independent set of size ≥ n/(t+ 1) = Ω(n). This independent
set is a valid induced planar subgraph of size Ω(n). Thus, the algorithm of Lemma 3.1.1 applies, resulting
in an (1− ε)-approximation to the largest induced planar subgraph. The running time of the resulting
algorithm is nO(1) + f(k, ε)n, for some function f .

Lemma 3.1.3. Let ε > 0 be a parameter, and U be a given set of n objects in Rd that are ρ-dense.
Then one compute a (1− ε)-approximation to the largest independent set in U . The running time of the
algorithm is O

(
n log n+ 2λλO(1)n

)
, where λ = O

(
ρd+1/εd

)
.

More generally, one can compute, with the same running time, an (1 − ε)-approximate solution for
all the problems described in Example 2.3.1.

Proof: Consider the intersection graph G = GU , and observe that by the low-density property, it always
have a vertex of degree ρ (i.e., take the object in U with the smallest diameter). As such, removing
this object and its neighbors from the graph, adding it to the independent set and repeating this
process, results in an independent set in G of size n/ρ. Thus implying that the largest independent
set has size Ω(n). Now, apply the algorithm of Lemma 3.1.1 to G using the improved λ-divisions of
Corollary 2.2.10 (B). Here, we need the total excess to be bounded by (ε/ρ)n, which implies that
λ = O

(
ρ/(ε/ρ)d

)
= O

(
ρd+1/εd

)
.

For the second part, observe that all the problems mentioned in Example 2.3.1 have solution bigger
than the independent set of U , and the same algorithm applies with minor modifications.

Remark 3.1.4. For independent set, one does not need to assume the low density on the input – a more
elaborate algorithm works, see Lemma 3.2.2 below.

It is tempting to try and solve problems like dominating set on polynomial-expansion graphs using
the algorithm of Lemma 3.1.3. However, note that a dominating set in such a graph (or even in a
star graph) might be arbitrarily smaller than the size of the graph. Thus, having small divisions is not
enough for such problems, and one needs some additional structure.

3.2. Local search for independent set and packing problems

Chan and Har-Peled [CH12] gave a PTAS for independent set with planar graphs, and the algorithm
and its underlying argument extends to hereditary graph classes with strongly sublinear separators (see
also the work by Mustafa and Ray [MR10]).
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3.2.1. Definitions

Let Π be a hereditary and mergeable property, and let λ be a fixed integer. For two sets, X and Y ,
their symmetric difference is X4Y = (X \ Y ) ∪ (Y \X). Two vertex sets X and Y are λ-close if
|X4Y | ≤ λ; that is, if one can transform X into Y by adding and removing at most λ vertices from X.
A vertex set X ∈ Π is λ-locally optimal in Π if there is no Y ∈ Π that is λ-close to X and “improves”
upon X. In a maximization problem Y improves X ⇐⇒ |Y | > |X|. In a minimization problem, an
improvement decreases the cardinality.

3.2.2. The local search algorithm in detail

The λ-local search algorithm starts with some arbitrary (potentially empty) solution X ∈ Π and,
by examining all λ-close sets, repeatedly makes λ-close improvements until terminating at a λ-locally
optimal solution. Each improvement in a maximization (resp., minimization) problem increases (resp.,
decreases) the cardinality of the set, so there are at most n rounds of improvements. Within a round
we can exhaustively try all exchanges in time nO(λ), bounding the total running time by nO(λ), where n
is the size of the ground set of Π.

3.2.3. Analysis of the algorithm

Theorem 3.2.1. Let G = (V,E) be a given graph with n vertices, and let Π be a hereditary and
mergeable property defined over the vertices of G that can be tested in polynomial time, Furthermore, let
ε > 0 and λ be parameters, and assume that for any two sets X, Y ⊆ V , such that X, Y ∈ Π, we have
that G|X∪Y has a λ-division with total excess ε |X ∪ Y |. Then, the λ-local search algorithm computes,
in nO(λ) time, a (1− 2ε)-approximation for the maximum size set Z ⊆ V satisfying Z ∈ Π.

Proof: Let O ⊆ V be an optimal maximum set satisfying Π, and L be a λ-locally maximal set satisfying
Π. Consider the induced subgraph K = GO∪L, and observe that, by assumption, there exists a λ-
division W = {C1, . . . , Cm} of K, with boundary vertices B and excess(W) ≤ ε |O ∪ L| ≤ 2ε |O| . For
i = 1, . . . ,m, let

(i) Oi = (O ∩ Ci) \B, oi = |Oi|,
(ii) Li = (L ∩ Ci), li = |Li|,

(iii) Bi = B ∩ Ci, and bi = |Bi|.
Fix i, and consider the set L′ = (L \Li)∪Oi. Since Π is hereditary, L \Li ∈ Π, and since Oi and L \Li
are separated, the set L′ is in Π. The set L is λ-locally optimal, and the exchange replacing Li by Oi

can not increase the overall cardinality. We conclude that li ≥ oi. Summing over all i, we have

|L| ≥
m∑
i=1

li −
m∑
i=1

bi ≥
m∑
i=1

oi −
m∑
i=1

bi ≥ |O| − excess(W) ≥ (1− 2ε) |O| ,

as desired.

Lemma 3.2.2. Let ε > 0 and ρ be parameters, and U be a given collection of objects in Rd, such that
any independent set in U has density ρ. Then the local search algorithm computes a (1−ε)-approximation
for the maximum size independent subset of U in time nO(ρ/εd+1).

Proof: Observing that the union of two ρ-dense sets results in a 2ρ-dense set, and using the algorithm
of Theorem 3.2.1, together with the divisions of Corollary 2.2.10 (B), implies the result.
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Remark 3.2.3. (A) We emphasize that Lemma 3.2.2 requires only that independent sets of the input
objects U have low density – the overall set U might have arbitrarily large density.

(B) All the problems of Example 2.3.1 have a PTAS using the Lemma 3.2.2 as long as the output
has low density.

3.3. Dominating Set

We are interested in approximation algorithm for the following variant of the dominating set problem.

Definition 3.3.1. Let G = (V,E) be an undirected graph, and let D and R be two subsets of V . The set
D dominates R if every vertex in R either is in D or is adjacent to some vertex in D. In the dominating
subset problem , one is given an undirected graph G = (V,E) and two subsets of vertices R and D,
such that D dominates R. The task is to compute the smallest subset of D that dominates R.

The algorithm is going to be a local search algorithm, but before analyzing it, we need to develop
some tools so we argue about the interaction between the local and optimal solution.

3.3.1. Shallow packings

Definition 3.3.2. Given a graph G = (V,E), a collection of sets F = {Ci ⊆ V | i = 1, . . . , t} is a (ω, t)-
shallow packing of G, or just a (ω, t)-packing , if for all i, the induced graph G|Ci

is t-shallow (see
Definition 2.1.10), and every vertex of V appears in at most ω sets of F¯.

The induced packing graph G[F] has F as the set of vertices, and two clusters C,C ′ are connected
in an edge if they share a vertex (i.e., C ∩ C ′ 6= ∅), or there are vertices u ∈ C and v ∈ C, such that
uv ∈ E.

For example, the induced packing graph of a (1, t)-packing is a t-shallow minor.

Lemma 3.3.3. Let G = (V,E) be an undirected graph, and F an (ω, t)-cover of G. Then the induced

packing graph H = G[F] has edge density
|E(H)|
|V (H)| ≤ 2ω2(t + 1)2

dt(G) + ω, where dt(G) is the t-shallow

density of G, see Definition 2.2.1.

Proof: Let the clusters of F be {C1, . . . , Cm}. For each cluster Ci ∈ F, designate a center vertex ci ∈ Ci
that can reach any other vertex in Ci by a path contained in Ci of length t or less. Let π : JmK→ JmK
be a random permutation of the cluster indices, chosen uniformly at random, and initialize F′ = ∅,
where JmK = {1, . . . ,m}. For indices i = 1, . . . ,m, in order, check if cπ(i) has been “scooped”; that is, if
cπ(i) ∈

⋃
C′∈F′ C ′, and if so, ignore it. Otherwise, C ′π(i) is the set of vertices of the connected component

of cπ(i) in the induced subgraph of G over Cπ(i) \
⋃
C′∈F′ C ′, and add C ′π(i) to F′. Intuitively, the set F′ is

a (1, t)-packing of G resulting from shrinking randomly the clusters of F.

We bound the number of edges in H = G[F] by a function of the expected number of edges in the
random graph H ′ = G[F′]. Let E1 = {CiCj ∈ E(H) | ci ∈ Cj or cj ∈ Ci} be the set of edges between
pairs of clusters where the center of one cluster is also in the other cluster. Since a center ci can be
covered at most ω times by F, we have |E1| ≤ ω |F|. Next, consider the set of remaining edges,

E2 = {CiCj ∈ E(H) | cj /∈ Ci and ci /∈ Cj} ,
¯We allow a set C to appear in F more than once; that is, F is a multiset.
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between adjacent clusters where neither center lies in the opposing cluster. For an edge CiCj ∈ E2,
consider the probability that C ′iC

′
j ∈ E(H ′).

Since Ci and Cj are adjacent in H, there is a path P in G from ci to cj of length at most 2t+ 1 that
is contained in Ci ∪ Cj, and a sufficient condition for C ′iC

′
j ∈ E(H) is that P is contained in C ′i ∪ C ′j.

This holds if the permutation π ranks i and j ahead of any other index k such that Ck intersects the
vertices of P . There are at most 2t+2 vertices on P , where each vertex can appear in at most ω clusters
of F, and overall there are at most ` = 2ω(t + 1) clusters that compete for control over the vertices of
P in F′. The probability that, among these relevant clusters, the random permutation π ranks i and j
before all others is 2(`− 2)!/`! ≥ 2/`2. Therefore, for CiCj ∈ E2, we have Pr

[
C ′iC

′
j ∈ E(H)

]
≥ 2/`2. By

linearity of expectation, and since H ′ = G[F′] is a t-shallow minor of G, we have

|E2| =
∑
e∈E2

`2/2

`2/2
≤ `2

2

∑
e∈E2

Pr
[
e ∈ E(H)

]
=
`2

2
E
[
|E(H)|

]
≤ `2

2
dt(G) |F′| ≤ `2

2
dt(G) |F| .

We conclude that
|E(H)|
|V (H)| =

|E2|
|F| +

|E1|
|F| ≤ (`2/2)dt(G) + ω, as desired.

Lemma 3.3.4. Let G be a graph and F an (ω, t)-packing of G. Then, for any integer u > 0, we have

du

(
G[F]

)
= 5ω2(2u+ 1)2(2t+ 1)2

d2tu+t+u(G).

In particular, if t and ω are constants, and G has polynomial of order k, then G[F] has polynomial
expansion of order k + 2.

Proof: For u ≥ 1, a u-shallow minor H of G[F] is the induced packing graph of a (ω, 2tu+ u+ t) cover.
By the preceding lemma,

|E(K)|
|V (K)|

≤ 5ω2(4tu+ 2u+ 2t+ 1)2
d2tu+t+u(G) = 5ω2(2t+ 1)2(2u+ 1)2

d2tu+t+u(G),

as desired.

3.3.2. Lexical product and shallow density

An interesting consequence of the above is an improvement over known bounds for the shallow density
under lexical product (this result is not directly related to the rest of the paper). Given two graphs G
and H, the lexical product G •H is the graph obtained by blowing up each vertex in G with a copy
of H. More formally, G •H has vertex set V (G) × V (H) and an edge between two vertices (x, y) and
(x′, y′) if either (a) xx′ ∈ E(G), or (b) x = x′ and yy′ ∈ E(H).

Corollary 3.3.5. For any graph G, clique Kω, and t ∈ N, we have dt(G •Kω) ≤ 5ω2(t + 1)2
dt(G).

In particular, if ω is constant and G has polynomial expansion of order k, then G •Kω has polynomial
expansion of order k + 2.

Proof: A t-shallow minor of G•Kω is the induced packing graph of the (ω, t)-cover formed by its clusters.
Thus, the claimed inequality follows Lemma 3.3.3.

Corollary 3.3.5 is an exponential improvement over the best previously known bounds, on the order

of dt(G •Kω) ≤
[
O
(
ωtdt(G)

)]O(t)
, by Nešetřil and Ossona de Mendez [NO08a] (see also the comments

following the proof of Proposition 4.6 in [NO12]).

14



3.3.3. Low density objects and (ω, t)-packings

Definition 3.3.6. For a set of objects U , a collection of subsets F = {Ci ⊆ U | i = 1, . . . , t} forms a (ω, t)-
shallow packing of G if, for all i, the intersection graph GCi

is t-shallow (see Definition 2.1.10), and
every object of U appears in at most ω sets of F. The induced object set U [F] is the collection of

objects
{⋃

f∈Ci
f
∣∣∣ Ci ∈ F

}
formed by taking the union of each cluster in F.

Lemma 3.3.7. Let U be a collection of objects with density ρ in Rd, and let F be a (ω, t)-shallow
packing. Then the induced object set U [F] has density O(ωρtO(d)).

Proof: Consider the collection of objects V =
⊔
Ci∈F Ci where each object f ∈ U is repeated according

to its multiplicity in F. Since each object in U appears in V at most ω times, V has density ωρ. The
induced object set U [F] is a t-shallow minor of V , so by Lemma 2.1.12, U [F] has density O(ωρtO(d)).

3.3.4. The result

Shallow packings arise in the analysis of the approximation algorithm for dominating set, where vertices
are clustered together by the vertices that dominate it. In this setting, we prefer the following simple
and convenient terminology.

Definition 3.3.8. Given a dominating set D = {v1, . . . , vm} of vertices in a graph G = (V,E), and a set
of vertices R ⊆ V being dominated by D. We generate a sequence of clusters C1, . . . , Cm ⊆ D ∪R that
specifies for every element of D, which elements it covers.

Initially, we set D0 = D and R0 = R. In the ith iteration, for i = 1, . . . ,m, let

Ci = {vi} ∪
(
(N(vi) ∩Ri−1) \Di−1

)
, Di = Di−1 \ {vi} , and Ri = Ri \ Ci,

where N(vi) is the set of vertices adjacent to vi in G. Conceptually, Ci induces a star-like graph Gi over
Ci, where every vertex of Ci is connected to vi. The cluster Ci (and implicitly to Gi) is a flower , where
vi is its head . The collection of clusters Q(D,R) = {C1, . . . , Cm} is the flower decomposition of the
given instance. Note that a flower is a 1-shallow graph, and a flower decomposition is a (1, 1)-shallow
packing.

Theorem 3.3.9. Let G = (V,E) be a graph with n vertices and with polynomial expansion of order k,
sets R,D ⊆ V such that D dominates R, and let ε > 0 be fixed. Then, for λ = O

(
ε−(2k+6) log2k+5(1/ε)

)
,

the λ-local search algorithm computes, in nO(λ) time, a (1+ε)-approximation for the smallest cardinality
subset of D that dominates R.

Proof: The algorithm starts with the whole collection D as the local solution, and perform legal (and
beneficial) local exchanges of size λ until no such exchange is available (see Section 3.2.2), where each
local exchange decreases the size of the local solution by one.

Let O ⊆ D and L ⊆ D be the optimal and locally minimum sets dominating R, respectively. Let
O = Q(O,R) and L = Q(L,R) be the corresponding flower decompositions. In the following, for
vertices o ∈ O and l ∈ L, we use Fo and F ′l to denote their flower in these decompositions, respectively.

Let H = G[O ∪ L] be the induced packing graph of F = O ∪ L. The set F is a (2, 1)-shallow cover
of G, and Lemma 3.3.4 implies that H has polynomial expansion of order k + 2. By Corollary 2.2.10
(A), H has λ = O

(
(1/ε)2k+6 log2k+5(1/ε)

)
-division W = {C1, . . . , Cm} with a set of boundary vertices

B, and total excess (ε/4) |F| ≤ (ε/4)
(
|O|+ |L|

)
≤ (ε/2) |L| . For i = 1, . . . ,m, let
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(i) Oi =
{
o ∈ O

∣∣ Fo ∈ O ∩ Ci} ,
(ii) Li =

{
l ∈ L

∣∣ F ′l ∈ (L ∩ Ci) \B
}

, and

(iii) Bi = B ∩ Ci.
Fix i, and consider the set L′ = (L \ Li) ∪ Oi. If a vertex v ∈ R is not dominated by L \ Li, then

v ∈ F ′l ⊆ N(l)∪ {l} for some l ∈ Li, and v ∈ Fo ⊆ N(o)∪ {o} for some o ∈ O with F ′l adjacent to Fo in
H. The cluster F ′l is an interior vertex of Ci, so Fo must be in the cluster Ci, and o ∈ Oi. As such, the
alternative solution L′ dominates v, and overall, L′ dominates R.

Since L is λ-locally minimal, and the exchange size is |L4L′| = |Li ∪Oi| ≤ |Ci| ≤ λ, implying that
L′ is at least as large as L. And thus, we have |L′| = |(L \ Li) ∪Oi| = |L| − |Li| + |Oi| ≥ |L| . Namely,
|Li| ≤ |Oi|. Summed over all the clusters Wi, we conclude

|L| ≤
m∑
i=1

(
|Li|+ |Bi|

)
≤

m∑
i=1

(
|Oi|+ |Bi|

)
≤ |O|+ 2 excess(W) ≤ |O|+ ε

2
|L| .

Solving for |L|, we have |L| ≤ |O| /(1− ε/2) ≤ (1 + ε) |O| , as desired.

3.3.5. Extensions – multi-cover and reach

One can naturally extend dominating set, as follows:

(A) Demands: For every v ∈ R, there is an integer δ(v) ≥ 0, which is the demand of v; that is, v
has to be adjacent to at least δ(v) vertices in the dominating set. In the context of set cover, this

is known as the multi-cover problem, see [CCH12]. Let δ̂ = maxv∈R δ(v) be the demand of the
given instance.

(B) Reach: Instead of the dominating set being adjacent to the vertices that are being covered, for
every vertex v ∈ R one can associate a distance τ(v) ≥ 1 – which is the maximum number of hops
the dominating vertex can be away from v in the given graph. The reach of the given instance is
τ̂ = maxv∈R τ(v).

Thus, a vertex v with demand δ(v) and reach τ(v), requires that any dominating set would have δ(v)
vertices in edge distance at most τ(v) from it.

Lemma 3.3.10. Let G = (V,E) be a graph with n vertices and with polynomial expansion of order k,
sets R ⊆ V and D ⊆ V , such that D dominates R, and let ε > 0 be fixed. Furthermore, assume that for
each vertex v ∈ R, there are associated demand and reach, where the reach τ̂ and demand δ̂ of the given
instances are bounded by a constant.

Then, for λ = O
(
ε−(2k+6) log2k+5(1/ε)

)
, the λ-local search algorithm computes, in nO(λ) time, a

(1 + ε)-approximation for the smallest cardinality subset of D that dominates R under the reach and
demand constraints.

Proof: Let ≺ be an arbitrary ordering on the vertices of G. For a set of vertices X ⊆ V and a vertex
z ∈ V , let NNk(z,X) be the k closest vertices to z in X, with respect to the length of the shortest path
in G, and resolving ties by ≺. The ordering ≺ ensures that NNk(z,X) is uniquely defined for any vertex
in the graph.

In the following argument, fix a set X ⊆ D that dominates R and complies with the given constraints,
and assign every vertex of u ∈ R to each of the vertices of NNδ(u)(u,X). For a vertex v ∈ X, let S(v)
be the set of vertices assigned to it. For each vertex v ∈ X, let Tv be the minimal subtree of the BFS
tree rooted at v that includes all the vertices of S(v) ∪ {v}. The flower Cv = V (Tv) is τ̂ -shallow in G.
Let F = Q(X,R) = {Cv | v ∈ X} be the resulting flower decomposition of X.
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We claim that a vertex z of G is covered at most δ̂ times by the flowers of F. More precisely, we
prove that z is covered by a flower Cv only if v ∈ NNδ̂(z,X). For the sake of contradiction, suppose
z ∈ Cv and that v /∈ NNδ̂(z,X). Then z is not assigned to v, so there must be a vertex u assigned to z
and an associated shortest path πuv = πuz|πzv from u to v through z, where πuz is the subpath from u
to z and πzu is the subpath from z to v. Since v ∈ NNδ̂(u,X)\NNδ̂(z,X), and both sets NNδ̂(u,X) and
NNδ̂(z,X) have the same cardinality, there exists another vertex v′ ∈ NNδ̂(z,X)\NNδ̂(u,X). Let σzv′ be
the shortest-path from z to v′. By construction of NNδ̂(z,X), either ‖σzv′‖ < ‖πzv‖ , or ‖σzv′‖ = ‖πzv‖
and v′ ≺ v. This implies that either ‖πuz|σzv′‖ < ‖πuz|πzv‖ , or v′ ≺ v and ‖πuz|σzv′‖ = ‖πuz|πzv‖ . In
any case, if ties are broken by ≺, then v′ is closer to u than v is, a contradiction to the premise that
v ∈ NNδ̂(u,X) and v′ /∈ NNδ̂(u,X). Thus, if z is in a flower Cv, then v ∈ NNδ̂(z,X).

Now, consider the local solution L and the optimal solution O. Let O = Q(O,R) and L = Q(L,R)
be the flower decompositions of the local and optimal solutions, respectively. Each flower decomposition
includes an element at most δ̂ times, so the combined collection F = O∪L is a

(
2δ̂, τ̂

)
-shallow packing.

By Lemma 3.3.4, the induced packing graph H = G[F] has polynomial expansion of order k + 2, and
we can largely follow the argument used in the proof of Theorem 3.3.9. We provide the details for the
sake of completeness.

Let λ = O
(
ε−2k+6 log2k+5(1/ε)

)
. There is a λ-division of H into clusters C1, . . . , Cm ⊆ F, with B ⊆ F

boundary vertices and total excess |B| ≤ (ε/4) |F|. For i = 1, . . . ,m, let

(i) Oi = O ∩ Ci,
(ii) Li = (L ∩ Ci) \ B, and

(iii) Bi = B ∩ Ci.
Fix i, and consider the cover L′ = (L \ Li) ∪ Oi. Consider a vertex v ∈ V such that there is a flower
in L \ L′ that covers it (i.e., the vertex “lost” coverage in this potential exchange). This implies that
v must be covered by a flower F ∈ Li; that is, by a flower that corresponds to a vertex of H that is
internal to Ci. Any flower F ′ ∈ F that covers v is adjacent to F in H, by the definition of H and as
F and F ′ share a vertex. As F is internal to Ci, all the flowers of F that cover v are in Ci, and in
particular, all the flowers covering v in the optimal solution belong to Oi. Thus, the coverage provided
by L′ meets the demand and reach requirements of v. The rest of the argument now follows the proof
of Theorem 3.3.9.

3.3.6. Extension: Connected dominating set

The algorithm of Lemma 3.3.10 can be extended to handle the additional constraint that the computed
dominating set is simultaneously connected. In this setting, the local search algorithm only considers
beneficial exchanges that result in a connected dominating set.

Lemma 3.3.11. Let G = (V,E) be a graph with n vertices and polynomial expansion of order k, and
let D ⊆ V be a connected dominating set. For each vertex v ∈ V , let δ(v) ≥ 1 be its associated demands,

and let δ̂ = maxv∈V δ(v) be bounded by a constant. Then, for λ = O
(
ε−(2k+6) log2k+5(1/ε)

)
, the λ-local

search algorithm computes, in nO(λ) time, a (1 + ε)-approximation for the smallest cardinality subset of
D that is connected and dominates V under the demand constraints.

Proof: We use the notations and argument used in Lemma 3.3.10. Here, after a local exchange, the
resulting set L′ = (L \ Li) ∪Oi might not necessarily connected (although it is still a dominating set).

Let Bi = heads(Bi) be the heads of boundary vertices of the ith cluster, see Definition 3.3.8. Because
the removed patch Li is only connected to the rest of L via the boundary vertices Bi, each component
of L contains at least one boundary vertex in Bi ∩ L. Similarly, each component of Oi contains at least
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one boundary vertex in Bi. Together, every component of L′ contains at least one vertex in Bi, so L′

has at most |Bi| ≤ λ components.
Consider the shortest path πxy within D between any two vertices x, y ∈ L′ that are in separate

components of L′. By minimality of πxy, the interior vertices of πxy are not in L′. If πxy has more than
4 vertices, then there exists an intermediate vertex v ∈ πxy that is adjacent to neither x nor y. Write
πxy = πxv|πvy, where πxv is the subpath from x to v and πvy is the subpath from v to y. Both subpaths
πxv and πvy contain at least two edges. Since δ(v) ≥ 1, v is adjacent to some vertex z ∈ L′. Since x
and y lie in different in components, z lies in a different component from either x or y. If x and z lie
in different components, then the path consisting of πxv followed by the edge from v to z is a shorter
path than πxy, a contradiction. A similar contradiction arises if z and y lies in different components. It
follows, by contradiction, that πxy has at most 4 vertices, all of which lie in D. By adding the entire
path πxy to L′, we can connect these two components by adding at most 2 vertices from D.

By repeatedly connecting the closest pair of components of L′ like so, we can augment L′ to a
connected dominating set L′′ while adding at most 2 |Bi| ≤ 2λ vertices. If we expand our search size to
λ′ = 3λ, then L′′ is a connected dominating set with |L′′4L| ≤ λ′, and the local optimality of L implies
that |Li| ≤ |Oi|+2 |Bi| . As in the previous proofs, summing this inequality over all i implies the claim.

Lemma 3.3.11 extends to constantly bounded reach with an added assumption.

Lemma 3.3.12. Let G = (V,E) be a graph with n vertices and with polynomial expansion of order k,
and let D ⊆ V be a given set. Assume that

(i) for each vertex v ∈ V , there are associated demand δ(v) ≥ 1 and reach τ(v) constraints,

(ii) δ̂ = maxv δ(v) = O(1) and τ̂ = maxv τ(v) = O(1),
(iii) the set D is a valid dominating set complying with the demand and reach constraints,
(iv) for any two vertices u, v ∈ D, the shortest path (in the number of edges) in G between u and v

is contained in G|D.

Then, for λ = O
(
ε−(2k+6) log2k+5(1/ε)

)
, the λ-local search algorithm computes, in nO(λ) time, a (1 + ε)-

approximation for the smallest cardinality subset of D that is connected and dominates V under the
reach and demand constraints.

Proof: The same proof as that of Lemma 3.3.11 goes through, except now the shortest paths between
distinct components can be shown to have length at most 2(τ̂ + 1) vertices. Condition (iv) is necessary
to keep these paths lying in D. The search size is increased by a factor of 2τ̂ instead of 2, which is only
a constant factor difference.

3.3.7. Discussion

Observation 3.3.13 (PTAS for vertex cover for graphs with polynomial expansion). The al-
gorithm of Theorem 3.4.1 can be used to get a PTAS for vertex cover. Indeed, let G = (V,E) be an
undirected graph with polynomial expansion. We introduce a new vertex in the middle of every edge of
G, and let H be the resulting graph, with R be the set of new vertices. Clearly, replacing an edge by a
path of length two changes the expansion of a graph only slightly, see Definition 2.2.2, and in particular,
H has polynomial expansion. Now, solving the dominating subset for R as the set required covering, and
V as the initial dominating set, in the graph H solves the original vertex cover problem in the original
graph. The desired PTAS now follows from Theorem 3.4.1.
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Graphs with subexponential expansion. While we are primarily concerned with graph classes
with strongly sublinear separators, the crucial construction of divisions, Lemma 2.2.9, still holds for

graph classes with hereditary separators of size O
(
n/ logO(1) n

)
. Rather than a poly(1/ε)-division with

excess εn, we get a f(1/ε)-division with excess εn for some function f . To this end, one can verify
(by the same proof as Theorem 2.2.6) that for a small constant c, if a graph class C has expansion
ϕ(t) = O

(
exp(c′ · tc′′)

)
, for c′ and c′′ sufficiently small constants, then C has separators of the desired

size O
(
n/ logO(1) n

)
. Thus, we obtain PTAS’s (with much worse dependence on ε) for any graph class

C with subexponential expansion dt(C) = O
(
exp(c′ · tc′′)

)
, where c′ and c′′ are some constants.

3.4. Geometric applications

The above implies PTAS’s for dominating set type problems on low-density graphs. Let U be a collection
of objects in Rd and P a collection of points. Two natural geometric optimization problems in this setting
are:

(A) Discrete hitting set : Compute the minimum cardinality set Q ⊆ P such that for every f ∈ U ,
we have Q ∩ f 6= ∅. That is, every object of U is stabbed by some point of Q.
If we consider the natural intersection graph G = GP∪U and the sets D = P and R = U , then this
is an instance of dominating subset problem. The algorithm of Theorem 3.3.9 applies because G
is low density and as such has polynomial expansion.

(B) Discrete set cover : Compute the smallest cardinality set V ⊆ U such that for every point
p ∈ P , we have p ∈

⋃
f∈V f. That is, all the points of P are covered by objects in V . Setting

D = U and R = P (i.e., flipping the sets in the hitting set case), and arguing as above, implies a
PTAS.

For these geometric optimization problems, we can improve the running time of Theorem 3.3.9 by
applying the stronger separator theorem for low-density graphs.

Theorem 3.4.1. Let U be a collection of m objects in Rd with density ρ, P be a set of n points in Rd,
and let ε > 0 be a parameter. Then, for λ = O

(
ρ/εd

)
, the local search algorithm, with exchanges of size

λ implies the following:
(A) An approximation algorithm that, in O

(
mnO(λ)

)
time, computes a set Q ⊆ P that is an (1 + ε)-

approximation for the smallest cardinality set that hits U .
(B) An approximation algorithm that, in O(nmO(λ)) time, computes a set V ⊆ U that is an (1 + ε)-

approximation for the smallest cardinality set that covers P .

Proof: Since points have zero diameter, the union U ∪ P also has density ρ. This reduces geometric
hitting set and discrete geometric set cover to dominating subset problem on the intersection graph of
G = GU∪P .

The approximation algorithm is described in Theorem 3.3.9 (applied to G). Here we can do slightly
better, using smaller exchange size, as the graph G has low density. To this end, observe that the
analysis of Theorem 3.3.9 argues about the induced packing graph of G for some (2, 1)-shallow packing
G. By Lemma 3.3.7, the graph H = G[G] has density O(ρ2d) = O(ρ). Thus, by Corollary 2.2.10 (B), H
has a λ-division with excess (ε/4) |V (H)|, where λ = O

(
ρ/εd

)
. The algorithm of Theorem 3.3.9 modified

to use these improved divisions implies the result.

Remark 3.4.2. To our knowledge, the algorithms of Theorem 3.4.1 are the first PTAS’s for discrete hitting
set and discrete set cover with shallow fat triangles and similar fat objects. Previously, such algorithms
were known only for disks and points in the plane.
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Figure 4.1: Illustration of the proof of Lemma 4.2.1: (A) A 3-regular graph with its 3 coloring. (B)
Placing the vertices on a circle. (C) Three edges and their associated triangles. (D) All the triangles.

4. Hardness of approximation

Some of the results of this section appeared in an unpublished manuscript [Har09]. Chan and Grant
[CG11] also prove some related hardness results, which were (to some extent) a followup work to the
aforementioned manuscript [Har09].

4.1. A review of complexity terms

The exponential time hypothesis (ETH) [IP01, IPZ01] is that 3SAT can not be solved in time better
than 2Ω(n), where n is the number of variables. The strong exponential time hypothesis (SETH),
is that the time to solve kSAT is at least 2ckn, where ck converges to 1 as k increases.

A problem that is APX-Hard does not have a PTAS unless P = NP. For example, it is known
that Vertex Cover is APX-Hard even for a graph with maximum degree 3 [ACG+99]. Thus, showing
that a problem X is APX-Hard implies that one can not do better than a constant approximation.
Specifically, if one can get a (1 + ε)-approximation for such a problem, for any constant ε > 0, then one
can (1 + ε)-approximate 3SAT. By the PCP Theorem, this would imply an exact algorithm for 3SAT.
Thus, under ETH, showing that a problem is APX-Hard implies that it does not even have a QPTAS,
where QPTAS is an (1 + ε)-approximation algorithm with running time nO(poly(logn,1/ε)).

4.2. Discrete hitting set for fat triangles

In the fat-triangles discrete hitting set problem , we are given a set of points in the plane P and
a set of fat triangles T, and want to find the smallest subset of P such that each triangle in T contains
at least one point in the set.

Lemma 4.2.1. There is no PTAS for the fat-triangle discrete hitting set problem, unless P = NP. One
can prespecify an arbitrary constant δ > 0, and the claim would hold true even if the following conditions
hold on the given instance (P,T):

(A) Every angle of every triangle in T is between 60− δ and 60 + δ degrees.
(B) No point of P is covered by more than three triangles of T.
(C) The points of P are in convex position.
(D) All the triangles of T are of similar size. Specifically, each triangle has side length in the range

(say) (
√

3− δ,
√

3 + δ).
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(E) The points of P are a subset of the vertices of the triangles of T.

Proof: Let G = (V,E) be a connected instance of Vertex Cover which has maximum degree three, and it
is not an odd cycle. We remind the reader that Vertex Cover is APX-Hard for such instances [ACG+99].

By Brook’s theorem [CR14]°, this graph is three colorable, and let V1, V2, V3 be the partition of V by
their colors. Let p1, p2, p3 be three points on the unit circle that form a regular triangle. For i = 1, 2, 3,
place a circular interval Ji centered at pi of length δ/100. Now, for i = 1, 2, 3, we place the vertices of
Vi as distinct points in Ji.

Let Q0 = V and m = |E(G)|. For i = 1, . . . ,m, let uivi be the ith edge of G. Assume, for the sake
of simplicity of exposition, that ui ∈ V1 and vi ∈ V2. Pick an arbitrary point qi in J3 \Qi−1, and create
the triangle Ti = 4uiviqi. Set Qi = Qi−1 ∪ {qi}, and continue to the next edge.

At the end of this process, we have m triangles T = {T1, . . . , Tm} that are arbitrarily close to being
regular triangles, and all their edges are arbitrarily close to being of the same length, see Figure 4.1. It
is easy to verify that a minimum cardinality set of points U ⊆ V that hits all the triangles in T is a
minimum vertex cover of G.

4.3. Friendly geometric set cover

Let P be a set of n points in the plane, and F be a set of m regions in the plane, such that
(I) the shapes of F are convex, fat, and of similar size,

(II) the boundaries of any pair of shapes of F intersect in at most 6 points,
(III) the union complexity of any m shapes of F is O(m), and
(IV) any point of P is covered by a constant number of shapes of F.

We are interested in finding the minimum number of shapes of F that covers all the points of P . This
variant is the friendly geometric set cover problem.

Lemma 4.3.1. There is no PTAS for the friendly geometric set cover problem, unless P = NP.

Proof: Let U be a set of n elements, and F a set of subsets of U each containing at most k elements of U .
In the minimum k-set cover problem, we want to find the smallest subcollection G ⊆ F that covers
U . The problem is MaxSNP-Hard for k ≥ 3, meaning there is no PTAS unless P = NP [ACG+99].

We will reduce an instance (U,F) of the minimum k-set cover problem (for k = 3) into an instance
of the friendly geometric set cover problem.

Let U = {u1, . . . , un} be a set of n elements, and F = {S1, . . . , Sm} a collection of m subsets of U . We
place n points equally spaced on the unit radius circle centered at the origin, and let P = {p1, . . . , pn}
be the resulting set of points. For each point ui ∈ U , let f(ui) = pi. For each set Si ∈ F (of size at most
3), we define the region

gi = CH
(

disk

(
1− i

10n2m

)
∪ f(Si)

)
,

where CH is the convex hull, f(Si) = ∪x∈Si
{f(x)}, and disk(r) denotes the disk of radius r centered at

the origin. Visually, gi is a disk with three (since k = 3) teeth coming out of it, see Figure 4.2. Note
that the boundary of two such shapes intersects in at most 6 points.

It is now easy to verify that the resulting instance of geometric set cover (P, {g1, . . . , gm}) is friendly,
and clearly any cover of P by these shapes can be interpreted as a cover of U by the corresponding sets

°Brook’s theorem states that any connected undirected graph G with maximum degree ∆, the chromatic number of
G is at most ∆ unless G is a complete graph or an odd cycle, in which case the chromatic number is ∆ + 1.
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pi

pj

pk

(i) (ii) (iii)

Figure 4.2: (i) A region g constructed for the set St = {ui, uj, uk}. Observe that in the construction, the
inner disk is even bigger. As such, no two points are connected by an edge of the convex-hull when we
add in the inner disk to the convex-hull. As such, each point “contribution” to the region g is separated
from the contribution of other points. (ii) How two such regions together. (iii) Their intersection.

of F. Thus, a PTAS for the friendly geometric set cover problem implies a PTAS for the minimum k-set
cover, which is impossible unless P = NP.

4.4. Set cover by fat triangles

In the fat-triangle set cover problem , specified by a set of points in the plane P and a set of fat
triangles T, one wants to find the minimum subset of T such that its union covers all the points of P .

Lemma 4.4.1. There is no PTAS for the fat-triangle set cover problem, unless P = NP. Furthermore,
one can prespecify an arbitrary constant δ > 0, and the claim would hold true even if the following
conditions hold on the given instance (P,T):

(A) The minimum angle of all the triangles of T is larger than 45− δ degrees.
(B) No point of P is covered by more than two triangles of T.
(C) The points of P are in convex position.
(D) All the triangles of T are of similar size. Specifically, each triangle has diameter in the range

(say) (2− δ, 2].
(E) Each triangle of T has two angles in the range (45 − δ, 45 + δ), and one angle in the range

(90− δ, 90 + δ).
(F) The vertices of the triangles of T are the points of P .

Proof: Consider a graph G with maximum degree three, and observe that a Vertex Cover problem in
such a graph can be reduced to Set Cover where every set is of size at most 3. Indeed, the ground set
U is the edges of G, and every vertex v ∈ V (G) gives a rise to the set Sv = {uv ∈ E(G) | u ∈ V (G)},
which is of size at most 3. Clearly, any cover C of size t for the set system X =

(
U,
{
Sv
∣∣ v ∈ V (G)

})
,

has a corresponding vertex cover of G of the same size. Thus, Set Cover with every set of size (at most)
three is APX-Hard (this is of course well known). Note that in this set cover instance, every element
participates in exactly two sets (i.e., the two vertices adjacent to the original edge).
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The graph G has maximum degree three, and by Vizing’s theorem [BM76], it is 4 edge-colorable±.
With regards to the set problem, the ground set of the set system X can be colored by 4 colors such
that no set in this set system has a color appearing more than once.

We are given an instance of the Vertex Cover problem for a graph with maximum degree 3, and we
transform it into a set cover instance as mentioned above, denoted by X = (U,FX ). Let n = |U |, and
color U (as described above) by 4 colors such that no set of X has the same color repeated twice, let
U1, . . . , U4 be the partition of U by the color of the points.

U1

U2

U3

U4

TS

Let C denote the circle of radius one centered at the origin. We place four
relatively short arcs on C, placed on the four intersection points of C with the
x and y axes, see figure on the right. Let I1, . . . , I4 denote these four circular
intervals. We equally space the elements of Ui (as points) on the interval Ii, for
i = 1, . . . , 4. Let P be the resulting set of points.

For every set S ∈ FX , take the convex hull of the points corresponding to its
elements as its representing triangle TS. Note, that since the vertices of TS lie on
three intervals out of I1, I2, I3, I4, it follows that it must be fat, for all S ∈ FX .
As such, the resulting set of triangles T = {TS |S ∈ FX } is fat, and clearly there is a cover of P by t
triangles of T if and only if the original set cover problem has a cover of size t.

Any triangle having its three vertices on three different intervals of I1, . . . , I4 is close to being an
isosceles triangle with the middle angle being 90 degrees. As such, by choosing these intervals to be
sufficiently short, any triangle of T would have a minimum degree larger than, say, 45− δ degrees, and
with diameter in the range between 2− δ and 2.

This is clearly an instance of the fat-triangle set cover problem. Solving it is equivalent to solving
the original Vertex Cover problem, but since it is APX-Hard, it follows that the fat-triangle set cover
problem is APX-Hard.

Remark 4.4.2. For fat triangles of similar size a constant factor approximation algorithm is known [CV07].
Lemma 4.4.1 implies that one can do no better. Naturally, it might be possible to slightly improve the
constant of approximation provided by the algorithm of Clarkson and Varadarajan [CV07]. However,
for fat triangles of different sizes, only a log∗ approximation is known [AdBES14]. It is natural to ask if
this can be improved.

4.4.1. Extensions

Lemma 4.4.3. Given a set of points P in the plane and a set of circles F, finding the minimum number
of circles of F that covers P is APX-Hard; that is, there is no PTAS for this problem.

Proof: Slightly perturb the point set used in the proof of Lemma 4.4.1, so that no four points of it are
co-circular. Let P denote the resulting set of points. For every set S ∈ FX , we now take the circle
passing through the three corresponding points. Clearly, this results in a set of circles (that are almost
identical, but yet all different), such that finding the minimum number of circles covering the set P is
equivalent to solving the original problem.

Lemma 4.4.4. Given a set of points Q in R3 and a set of planes F, finding the minimum number of
planes of F that covers Q is APX-Hard; that is, there is no PTAS for this problem.

±Vizing’s theorem states that a graph with maximum degree ∆ can be edge colored by ∆ + 1 colors. In this specific
case, one can reach the same conclusion directly from Brook’s theorem. Indeed, in our case, the adjacency graph of the
edges has degree at most 4, and it does not contain a clique of size 4. As such, this graph is 4-colorable, implying the
original graph edges are 4-colorable.

23



Proof: Let P be the point set and F be the set of circles constructed in the proof of Lemma 4.4.3,
and map every point in it to three dimensions using the mapping f : (x, y) → (x, y, x2 + y2). This
is a standard lifting map used in computing planar Delaunay triangulations via convex-hull in three
dimensions, see [BCKO08]. Let Q = f(P ) be the resulting point set.

It is easy to verify that a circle of c ∈ F is mapped by f into a curve that lies on a plane. We will
abuse notations slightly, and use f(c) to denote this plane. Let G = f(F). Furthermore, for a circle
c ∈ F, we have that f(c ∩ P ) = f(c) ∩Q. Namely, solving the set cover problem (Q,G) is equivalent to
solving the original set cover instance (P,F).

The recent work of Mustafa et al. [MR10] gave a QPTAS for set cover of points by disks (i.e., circles
with their interior), and for set cover of points by half-spaces in three dimensions. Thus, somewhat
surprisingly, the “shelled” version of these problems are harder than the filled-in version.

4.5. Independent set of triangles in 3D

Given a set U of n objects in Rd (say, triangles in 3d), we are interested in computing a maximum
number of objects that are independent ; that is, no pair of objects in this set (i.e., independent set)
intersects. This is the geometric realization of the independent set problem for the intersection graph
induced by these objects.

Lemma 4.5.1. There is no PTAS for the maximum independent set of triangles in R3, unless P = NP.

Proof: The problem Independent Set is APX-Hard even for graphs with maximum degree 3 [ACG+99].
Let G = (V,E) be a given graph with maximum degree 3, where V = {v1, . . . , vn}. We will create a set
of triangles, such that their intersection graph is G.

If one spreads n points p1, . . . , pn on the positive branch of the moment curve in R3 [Sei91, EK03],
their Voronoi diagram is neighborly ; that is, every Voronoi cell is a convex polytope that shares a
non-empty two dimensional boundary face with each of the other cells of the diagram. Let Ci denote
the cell of the point pi in this Voronoi diagram, for i = 1, . . . , n.

Now, for every vertex vi ∈ V , we form a set Pi of (at most) three points, as follows. If vivj ∈ E, then
we place a point pij on the common boundary of Ci and Cj, and we add this point to both Pi and Pj.
After processing all the edges in E, each point set Pi has at most three points, as the maximum degree
in G is three.

For i = 1, . . . , n, let fi be the triangle formed by the convex-hull of Pi (if Pi has fewer than three
points then the triangle is degenerate).

Let T = {f1, . . . , fn}. Observe that the triangles of T are disjoint except maybe in their common
vertices, as their interior is contained inside the interior of Ci, and the cells C1, . . . , Cn are interior
disjoint. Clearly fi ∩ fj 6= ∅ if and only if vivj ∈ E. Thus, finding an independent set in G is equivalent
to finding an independent set of triangles of the same size in T. We conclude that the problem of
finding maximum independent set of triangles is APX-Hard, and as such does not have a PTAS unless
P = NP.

Implicit in the above proof is that any graph can be realized as the intersection graph of convex
bodies in R3 (we were a bit more elaborate for the sake of completeness and since we needed slightly
more structure). This is well known and can be traced to a result of Tietze from 1905 [Tie05].
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4.6. Hardness of approximation with respect to depth

We reconsider the geometric set cover problem: Given a set of objects U in Rd, and a set of points P ,
we would like to find minimum cardinality subset of the objects in U that covers the points of P .

Lemma 4.6.1. Assuming the exponential time hypothesis (ETH) (see Section 4.1). Consider a given
set of fat triangles T, and a set of points P and density ρ, such that |P | + |T| = O(n). We have the
following:

(A) If ρ = Ω(logc n) then one cannot (1+ε)-approximate the geometric set cover (or geometric hitting
set) instance (P,T) in polynomial time, where c is a sufficiently large constant.

(B) There is no (1 + ε)-approximation algorithm for the geometric set cover (or hitting set) instance
(P,T) with running time npoly(log ρ,1/ε).

Proof: (A) Suppose we had such a PTAS, and consider an instance I of 3SAT of size at least c′ log2 n,
where c′ is a sufficiently large constant. ETH implies that any algorithm solving such an instance must
have running time at least nΩ(logn). On the other hand, the instance I can be converted to a set cover
instance of fat triangles with polylog n triangles/points and polylog n density, by Lemma 4.4.1. As such,
a PTAS in this case, would contradict ETH.

(B) An algorithm with running time npoly(log ρ,1/ε), would imply via the instance of part (A), that an
instance of 3SAT with polylog n number of variables can be solved in nO(poly(log logn)) time, contradicting
ETH.

The same conclusions holds for geometric hitting set, by using Lemma 4.2.1.

5. Conclusions

In this paper, we studied the class of graphs arising out of low density objects in Rd, and showed that the
belong to the class of graphs that have polynomial expansion. We also provided PTAS’s for independent
set and dominating set problems (and some variants) for such graphs.

At this point in time, it seems interesting to better understand low density graphs. In particular,
how exactly do they relate to graphs of low genus, and whether one can develop efficient approximation
algorithms and hardness of approximations to other problems for this family of graphs. For example,
as a concrete problem, can one get a PTAS for TSP for low-density graphs or polynomial expansion
graphs?
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A. Proofs

A.1. Proof of Theorem 2.2.6

Proving Theorem 2.2.6 requires the following result.

Theorem A.1.1 ([PRS94, Theorem 2.3]). Let G be a graph with m edges and n vertices, and let
`, h ∈ N be two integer parameters. There is an O(mn/`) time algorithm that either produces

(a) the clique Kh as a ` log n-shallow minor of G, or
(b) a separator of size at most O(n/`+ 4`h2 log n).

Restatement of Theorem 2.2.6. Let C be a class of graphs with polynomial expansion of order k.
For any graph G ∈ C with n vertices and m edges, one can compute, in O

(
mn1−α log1−α n

)
time, a

separator of size O
(
n1−α log1−α n

)
, where α = 1/(2k + 2).

Proof: Let z be a parameter to be fixed shortly, and let ` = z/ log n and czk/4 > dz(G), where c is a
sufficiently large constant. Consider a z-shallow minor H of G with h = czk vertices, and observe that

by definition, we have that |E(H)| ≤ dz(G) |V (H)| < czk

4
czk <

(
h

2

)
. That is, the graph H can not be

the clique Kh.
Now, by Theorem A.1.1, G has a separator of size

O
(
n/`+ `h2 log n

)
= O

(
n log n

z
+

z

log n
· z2k · log n

)
= O

(
n log n

z
+ z2k+1

)
= O

(
n

2k+1
2k+2 log

2k+1
2k+2 n

)
for z = n1/(2k+2) log1/(2k+2) n. The algorithm provided by Theorem A.1.1 runs in time O

(
mn
`

)
=

O(mn logn
z

) = O(mn
2k+1
2k+2 log

2k+1
2k+2 n).
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Figure A.1: Illustration of the
proof of Lemma 2.2.7.

(A) The ball b(c, r), and the
separating sphere S(c, R).

(B) All the objects intersect-
ing S(c, R) are in the separat-
ing set.

A.2. Separators for low-density objects

The following result is implied readily by the known results of Miller et al. [MTTV97], Smith and
Wormald [SW98], and Chan [Cha03]. We provide a proof here for the sake of completeness, and since
it is arguably simpler and more elegant.

Restatement of Lemma 2.2.7. Let U be a set of n objects in Rd with density ρ > 0 (see Defini-
tion 2.1.3p5), and let k ≤ n be some prespecified number. Then, one can compute, in expected O(n)
time, a sphere S that intersects O

(
ρ+ ρ1/dk1−1/d

)
objects of U . Furthermore, the number of objects of U

strictly inside S is at least k−o(k), and at most O(k). For k = O(n) this results in a balanced separator.

Proof: For every object f ∈ U , choose an arbitrary representative point pf ∈ f . Let P be the resulting
set of points. Next, let b(c, r) be the smallest ball containing k points of P . As in [Har13], randomly
pick R uniformly in the range [r, 2r]. We claim that the sphere S = S(c, R) bounding the ball b = b(c, R)
is the desired separator.

To this end, consider the distance ` = t · r, where t ∈ (0, 1) is some real number to be specified
shortly. The sphere S can intersect only O(ρ/td−1) objects with diameter ≥ ` – indeed, cover the sphere
S with O(1/td−1) balls of radius `/2, and let B be this set of balls. Next, charge each object of diameter
larger than ` intersecting S to the ball of B that intersect it. Each ball of B get changed ρ times at most.

Furthermore, any object of U that intersects S, and has diameter ≤ ` ≤ r, is fully contained in
b′ = b(c, 3r), and b′ can be covered by cd

2 balls of radius r. As such, b′ contains at most k′ = cd
2k

points of P , which implies that b′ can contain at most k′ = O(k) objects of U inside it, where cd is the
doubling constant of Rd (see Definition 2.1.7p6). Namely, b′ fully contains at most O(k) objects of U of
diameter ≤ `.

Let Ub′ be the sets of objects of U , of diameter ≤ `, that are contained in b′. For an an object g ∈ Ub′ ,
consider the closest point p and the furthest point q in g from c. The object g is in the separating set
(and as such, it “intersects” S), if S separates p from q (thus potentially allowing g to be disconnected).
Thus, we have that

α(g) = Pr
[
g intersects S

]
≤ ‖c− q‖ − ‖c− p‖

r
≤ diam(g)

r
≤ `

r
= t.

We conclude that the separator size, in expectation, is

N = O
(
ρ+ ρ/td−1 +

∑
g∈Ub′

α(g)
)

= O
(
ρ+ ρ/td−1 + kt

)
Solving for ρ/td−1 = kt, yields t = (ρ/k)1/d, and the resulting separator is in expectation of size
O(ρ+ ρ1/dk1−1/(d)).
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As for the running time, it is sufficient to find a two approximation to the smallest ball that contains
k points of P , and this can be done in linear time [HR13]. Using such an approximation slightly
deteriorates the constants in the bounds. By Markov’s inequality, S intersects at most 2α′ objects of
U with probability ≥ 1/2. If this is not true, we rerun the algorithm. Clearly, in expectation, after a
constant number of iterations the algorithm would succeed in finding a sphere that intersects at most
2N objects of U .

Remark A.2.1. Mark de Berg (personal communication) pointed out the current simplified proof of
Lemma 2.2.7. The authors thank him for pointing out the simpler proof.

A weighted version of the above separator follows by a similar argument.

Lemma A.2.2. Let U be a set of n objects in Rd with density ρ, and weights w : U → R. Let
W =

∑
f∈U w(f) be the total weight of all objects in U . Then one can compute, in expected linear time,

a sphere S that intersects O
(
ρ+ ρ1/dn1−1/d

)
objects of U . Furthermore, the total weight of objects of U

strictly inside/outside S is at most cW , where c is a constant that depends only on d.

Proof: The argument follows the one used in Lemma 2.2.7. We pick a representative point from each
object, and assign it the weigh of the object. Next, we compute the smallest ball containing ≥ cW of
the total weight of the points, and the rest of the proof follows readily, observing that in the worst case,
n objects might be involved in the calculations.

A.3. Hereditary separators imply small divisions

Restatement of Lemma 2.2.9. Let G be a graph with n vertices, such that any induced subgraph with
m vertices has a separator with O(mα logβm) vertices, for some α < 1 and β ≥ 0. Then, for ε > 0, the

graph G has λ-divisions with total excess εn, where λ = O
((
ε−1 logβ ε−1

)1/(1−α)
)
.

Proof: Our strategy is to break G into smaller pieces. Specifically, at every step the algorithm takes the
largest remaining piece G|U , compute a balanced separator Z ⊆ U for it, with L,R ⊆ U being the two
separated pieces. Specifically, we have

(i) Z = L ∩R,
(ii) L ∪R = U ,

(iii) |L| ≤ (2/3) |U | and |R| ≤ (2/3) |U | (see Definition 2.2.5),
(iv) L \ Z is separated from R \ Z in G|U , and

(v) |Z| ≤ f
(
|U |
)
, where f(m) ≤ cmα logβm, where c is a sufficiently large constant.

Now, the algorithm replaces G|U by the two “broken” pieces G|L and G|R. The algorithm continues in
this process until all pieces are of size smaller than b (and by construction, of size at least, say, b/4),
where b is some parameter to be specified shortly. This generates a natural binary separator tree, where
the final pieces of the division are the leafs.

Let Ni = (3/4)in, for i = 0, . . . , h =
⌈
log4/3 n

⌉
. A piece GU is at level i if Ni+1 < |U | ≤ Ni. Consider

such a subproblem at node y, which is at level i with ν vertices. The total size of the subproblems of
its two children is ≤ ν + 2f(ν) (here, somewhat confusingly, we count the separator vertices as new,
in both subproblems – this makes the following argument somewhat easier). Importantly, each of the
subproblems is of size ≤ (2/3)ν + f(ν) ≤ (3/4)ν, implying that both subproblems are in strictly lower
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level. As such, the fraction of the new vertices created as subproblems move from the ith level to the
next is bounded by

ν + 2f(ν) ≤ ν + 2cνα logβ ν =

(
1 +

2c logβ ν

ν1−α

)
ν ≤ γiν,

for γi = 1 + 2
c logβ Ni+1

(Ni+1)1−α . In particular, the total number of vertices in the kth level is at most ∆kn,

where

∆k =
k−1∏
j=0

γj ≤
k−1∏
j=0

exp

(
2
c logβ Nj+1

(Nj+1)1−α

)
= exp

(
k−1∑
j=0

2c logβ Nj+1

(Nj+1)1−α

)
≤ exp

(
c′ logβ Nk

(Nk)
1−α

)

≤ 1 +
2c′ logβ Nk

(Nk)
1−α ,

since the summation behaves like an increasing geometric series, and c′ is a constant that depends on c.
The last step follows as ex ≤ 1 + 2x, for 0 ≤ x ≤ 1/2. In particular, because of the double counting of
the separator vertices, the total number of marked vertices in the first k levels is bounded by n(∆k − 1).
As such, we need that ∆k − 1 ≤ ε. This is equivalent to

2c′ logβ Nk

(Nk)
1−α ≤ ε ⇐⇒ 2c′

ε
≤ (Nk)

1−α

logβ Nk

,

which holds if Nk ≥
(
c′′ε−1 logβ ε−1

)1/(1−α)
, where c′′ is a sufficiently large constant. In particular, setting

b to (say) twice this threshold implies the claim.
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