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Abstract

A set of 𝑛 points in a geometric space implicitly induces a complete graph where the weight of an
edge between two points is a function of the distance between the endpoints. There are many natural
problems that arise from such a geometric graph and many standard geometric problems can be recast as
simple properties of this graph. A basic algorithmic obstacle that arises is that the explicit size of the
graph is quadratic in the size of the input. There is a long line of research overcoming this obstacle in
low-dimensional spaces, as well as some positive results in high-dimensional and more abstract models for
specific applications. Here we consider graph problems in general and address the issue of constructing
the geometric graph. Rather than constructing these graphs exactly, we ask if it is possible to explicitly
construct a sparse approximation of these geometric graphs in nearly linear time.

We consider geometric graphs where the edge weights are given as either as a metric (via an oracle),
or given by a smooth kernel function in a Euclidean space. For both of these settings, we show that for
any 𝜖 > 0, one can compute an explicit (1 + 𝜖)-approximate spectral approximation of the geometric
graph with �̃�

(
𝑛/𝜖2) edges in �̃�

(
𝑛/𝜖2) randomized time. Some of these algorithms are extremely simple.

Composed with nearly linear time graph algorithms, this allows for a broad class of applications on
geometric graphs with running times proportional to the number of points.
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1 Introduction

Many geometric problems can be formulated graphically as follows. The input consists of 𝑛 points 𝑉 in
some metric space, and one considers an implicit complete undirected graph over 𝑉 where the weight of an
edge is a function of the distance between its endpoints in the underlying geometry. A simple question such
as computing the average degree in this graph is both useful for many applications, and difficult without
inspecting every edge. Usually, in combinatorial settings where the graph is given explicitly, a running time
proportional to the number of edges equates to a running time proportional to the input size, and is satisfactory.
Geometric graphs are implicit, and the explicit size of the graph, proportional to 𝑛2, is quadratic in the size of
the input, proportional to 𝑛. This simple obstacle makes many basic problems nontrivial. To circumvent this
𝑛2-time barrier, algorithms are designed to take advantage of the underlying geometry. In many cases these
algorithms are approximate and randomized. For example, one can efficiently approximate the average degree
by random sampling approaches informed by the geometry, in multiple contexts discussed below. In this
work, we consider approximations for the broad class of optimization problems defined on these implicit
graphs, and devise general strategies to obtain running times proportional to 𝑛, rather than 𝑛2.

This work is focused on two broad classes of implicit geometric graphs, where the edges weights either
form a metric, or where the edge weights are given by a kernel over a Euclidean space.

1.1 Metrics

Arguably the simplest and most ubiquitous geometric setting is metric spaces. The input consists of 𝑛 points
𝑉 and a metric 𝑑 : 𝑉 × 𝑉 → R≥0 given implicitly via an oracle. We interpret the input as a complete
graph 𝐺𝑑 = (𝑉, 𝐸) with edge weights given by 𝑑. The goal is to solve combinatorial problems on 𝐺𝑑 with
algorithms that either (a) run in time substantially smaller than the explicit size of the metric – 𝑂 (𝑛2) – or
otherwise (b) query substantially less than all

(𝑛
2
)

lengths in the metric. Such algorithms are called “sublinear
time algorithms” in the literature – “sublinear” is meant with regards to the explicit size of the metric. This
model was initiated by the seminal work of Indyk [28, 29], which showed the first sublinear bounds for
approximating a variety of basic problems (such as average degree, 1-median, bicriteria approximations
for 𝑘-median, 2-clustering, and maximum cut) as well as lower bounds for problems that do not permit
sublinear algorithms. We refer to the excellent survey by Czumaj and Sohler [18] on sublinear algorithms in
metrics, particularly in the context of property testing. More recently, Chechik, Cohen, and Kaplan [16] gave
randomized algorithms that, among other results, could (1 ± 𝜖)-approximate the sum of all distances in a
metric with high probability in 𝑂

(
𝑛 + 𝜖−2 log(𝑛)

)
queries, and (1 ± 𝜖)-approximate the degree of all of the

vertices with 𝑂
(
𝑛 log(𝑛)/𝜖2) queries, improving previous work from [29]. Their algorithms are also efficient

in the implicit setting of the shortest path metric in a graph (where one does not have a point to point oracle,
but one can obtain single-source distances in nearly linear time). Another recent work by Esfandiari and
Mitzenmacher [20] is based on importance sampling edges. Their results include a nearly-linear time 1/2 − 𝜖
approximation for densest subgraph and a sublinear oracle complexity (though not sublinear running time) for
maximum 𝑘-hypermatching. Another result improves 𝜖-dependence in the oracle complexity for maximum
cut as compared to [28] (although not the running time). [20] also showed a lower bound of Ω(𝑛) queries for
the problems of approximating the sum of distances, the densest subgraph, and the maximum cut. Note that
the lower bound for estimating the sum of distances is tight with the algorithm of [16]. We also refer the
reader to [20] for additional references, which are still up to date.

1.2 Kernels

We consider the analysis of graphs over 𝑛 points in moderate to high-dimensional Euclidean spaces R𝑑 ,
where the weight of an edge between two points is given implicitly by a kernel function 𝜅 : R𝑑 × R𝑑 → R≥0
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that typically decay with the Euclidean distance between the two points. This definition might appear
derived compared to metrics, but there are also a large number of applications using kernels. In physics,
kernel-weighted graphs arise in 𝑛-body systems where each pair of bodies 𝑥 and 𝑦 have some kind of force
between them (e.g., gravitational pull) that decays with the Euclidean distance between 𝑥 and 𝑦. Kernels also
arise in statistical analysis, where (for example) 𝜅(𝑥, 𝑦) may reflect the likelihood of one data point given
another (under some distributional assumptions). Throughout machine learning kernels are used to measure
similarity between points.

A primary computational task related to kernels is kernel density estimation. In density estimation,
given a set of points 𝑉 and a query point 𝑞, the goal is to estimate either the total or the average of kernel
valuations 𝜅(𝑞, 𝑣) over all 𝑣 ∈ 𝑉 . In 𝑛-body systems in physics, this may measure the potential at a point.
In statistics, this is a reasonable estimate of the density of a distribution where the set 𝑉 reflects empirical
observations. Density estimation is an important primitive for many applications in machine learning [21, 22,
38, 40, 44].

The scientific computing community has been very successful in designing algorithms for kernel density
estimation problems in low-dimensional spaces (e.g., 𝑑 = 2 or 3) as arise in physics. The most famous of
these results is the celebrated fast multipole method by Greengard and Rokhlin Jr. [24]. The fast multipole
method has been applied to a number of related problems and we refer to [9, 12, 23] for further background.

For many applications in statistical analysis and machine learning, the dimension 𝑑 is large. The fast
multipole method relies on geometric data structures that scale poorly with the dimension. More recent work
has tried to handle high-dimensional point sets with sampling based approaches. Holmes, Gray, and Isbell Jr.
[27] first gave the following value-dependent bound for density estimation. For 𝜇 ∈ (0, 1), to decide if the
density is less than 𝜇 up to a (1 ± 𝜖)-multiplicative error, [27] showed that it sufficed to evaluate the kernel at
1/𝜖2𝜇 (randomly selected) points. The number of kernel evaluations was reduced by Charikar and Siminelakis
[14] to roughly 1/𝜖2√𝜇 kernel evaluations, using sophisticated techniques such as locality-sensitive hashing
[30] to generate appropriate nonuniform sampling probabilities. Followup work in [41] considered some of
the more practical aspects of [14] and, with some algorithmic enhancements and refined analysis, was able
to demonstrate empirical improvements that support the theory. Additional enhancements to the approach
of [14] are developed in [6]. Backurs, Indyk, and Schmidt [5] showed that some dependence on 𝜇 is
necessary under the Strong Exponential Time Hypothesis. In pursuit of more efficient algorithms with bounds
that are independent of 𝜇, Backurs, Charikar, Indyk, and Siminelakis [4] considered a restricted class of
smooth kernels that decay polynomially in the distance. This class is broad enough to include many of the
more popular kernel functions. For this class, [4] gave density estimation algorithms that require (roughly)
just log(𝑛)/𝜖2 kernel evaluations. Their techniques also use or are inspired by locality sensitive hashing.
[15] extends hashing based techniques to additional kernels such as log-convex kernel functions. These
groundbreaking algorithms for kernel density estimation have inspired further applications related to kernels
that either use density estimation directly or are otherwise inspired by the underlying hashing techniques.

In this work, we treat the input points as vertices of a graph with edges weighted by a smooth kernel 𝜅.
We call this a kernel graph. We believe it would be very fruitful to solve graph partitioning, embedding, or
clustering problems on kernel graphs. To place the previous literature in this context, observe that the kernel
density at a point is the weighted degree of that point in the kernel graph.

While the graphical perspective towards a kernel 𝜅 is natural and expressive, it is also computationally
expensive. The basic obstruction in modeling a kernel as a graph is the simple difficulty of constructing the
graph. The graph is a clique and each pair of points requires evaluating 𝜅 to determine the weight of the
edge between them. Meanwhile, all of the algorithmic effort discussed above was entirely to avoid such an
all-to-all kernel computation. If one cannot build the kernel graph, then the idea of running sophisticated
graph algorithms on kernels is moot.
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1.3 Algorithms and results

In this work, we do not try to construct metric graphs or kernel graphs exactly. Instead, we ask it is possible
to explicitly construct a sparse approximation of these geometric graphs in nearly linear time. We want
the running time to be comparable to the above literature (for more specific problems), and in particular,
roughly proportional to 𝑛. The graph should be constructed explicitly so that existing graph algorithms can
be applied directly. The graph should also be sparse to decrease the input size to algorithms downstream.
(Sparsity is also necessitated by the running time requirement.) To define our notion of approximation, we
take a spectral perspective on kernel weighted graphs. We seek to produce a graph whose Laplacian quadratic
form preserves the Laplacian of the geometric graph up to a controlled relative error. The Laplacian encodes
many aspects of the graph (some of which are listed later), so many graph algorithms applied to the spectral
approximation beget approximations w/r/t the original geometric graph – without ever building the geometric
graph explicitly.

We depart conceptually from most previous work in the sense that we are principally concerned with
preserving the structure of the entire graph. Previous work tends to be more problem-specific and interested in
estimating a precise set of quantities. The narrowed scope in previous work offers more structure to leverage
and limits the potential combinations one must account for in the design and analysis of these algorithms.
The relatively problem independent approach here tends to lead to observations about the structure of some
of these geometric graphs in general, and the output, a spectral sparsifier, can be used in many different
ways. The guiding hope is that an efficient spectral approximation to geometric graphs might enable a vast
and well-developed catalog of graph algorithms to be applied to geometry problems, and open up a new
combinatorial perspective on them. An inspiring example of a previous result in this spirit is the well-separated
pair decomposition of Callahan and Kosaraju [13] for low-dimensional Euclidean spaces, which lead to
spanners (i.e., auxiliary graphs that preserve all distances) and many other results in computational geometry.

1.3.1 Spectral sparsification of metrics

The first result in this work is an easily implementable algorithm that produces a sparse spectral approximation
of a metric in nearly linear time and queries.

Theorem 1.1. Given a metric 𝑑 over 𝑛 points accessed via an oracle, there is a randomized algorithm
that with high probability, returns a weighted graph with 𝑂

(
𝑛 log(𝑛)/𝜖2) edges that is a (1 ± 𝜖)-spectral

approximation of the weighted graph induced by 𝑑 in 𝑂
(
𝑛 log(𝑛)

(
log(𝑛) +𝑄

) )
randomized time, where 𝑄

denotes an oracle query to the metric 𝑑.

The key ingredient in the above theorem is the following uniform upper bound on the effective resistance
of all the edges in a metric. The effective resistance between two vertices in an undirected graph is introduced
in greater detail in Section 2. It is the quantity obtained by interpreting the graph as an electrical network, and
measuring the resistance of this network as if it were a single resistor between the two vertices. We refer to
the effective resistance of the endpoints of an edge 𝑒 as simply the effective resistance of 𝑒.

Theorem 1.2. Let 𝐺 = (𝑉, 𝐸) be a complete undirected graph with edge weights given by a metric 𝑑. Let
𝐷 =

∑
𝑒∈𝐸 𝑑 (𝑒) be the sum of distances over all pairs of vertices. For all edges 𝑒 ∈ 𝐸 ,

(effective resistance of 𝑒) ≤ 𝑐𝑛

𝐷

for some universal constant 𝑐 > 0.

Spielman and Srivastava [43] showed that in general undirected graphs, importance sampling edges
in proportion to their individual weights times their effective resistances produces a random graph whose
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Laplacian is strongly concentrated around the original graph. Usually some effort is required to compute the
effective resistances, which for geometric graphs would lead to quadratic running times. Theorem 3.2 instead
gives a universal upper bound that is still strong enough to produce sparse graphs within the framework of
[43]. Theorem 1.2 says that in a metric, one only needs to importance sample edges in proportion to their
lengths to produce a spectral approximation.

To complete the algorithm in Theorem 1.1, it remains to crudely estimate the length of each edge with
very few queries. Here one could use a subroutine in [20], but we propose an alternative that is simpler and
improves the query complexity by a logarithmic factor. All put together, the total algorithm for Theorem
1.1 is extremely simple to implement. The algorithm non-uniformly samples 𝑂

(
𝑛 log(𝑛)/𝜖2) edges with

repetition in proportion to crude estimates of the edge lengths. The sampled edges are added to the graph
with weights scaled (roughly) in inverse proportion to the edge’s probability of being sampled. The crude
estimates are obtained by first uniformly sampling 𝑂

(
𝑛 log 𝑛

)
edges. For each edge 𝑒, we estimate their length

by taking the sum of lengths of the uniformly sampled edges incident to 𝑒, divided by log(𝑛).
While Theorem 1.1 is based on the abstract oracle model, the results are also interesting for the explicit

setting of Euclidean distance in R𝑑 . An important tool in this setting is random projection [31], with which
one can randomly project down to 𝑂

(
log(𝑛)/𝜖2) dimensions and preserve all pairwise distances up to a

(1 ± 𝜖)-multiplicative factor. For example, Barhum, Goldreich, and Shraibman [7] observed that to estimate
the average Euclidean distance in R𝑑 with constant probability of success, it suffices to project onto 𝑂

(
1/𝜖2)

dimensions. For the spectral sparsifier presented here, when the dimension 𝑑 is greater than log(𝑛)/𝜖2,
one can use the sparse Johnson-Lindenstrauss transform [1, 19, 32, 33] to reduce the running time slightly
from 𝑂

(
𝑛
(
𝑑 + log(𝑛)

)
log(𝑛)/𝜖2) to 𝑂

(
𝑛𝑑 log(𝑛)/𝜖 + 𝑛 log2(𝑛)/𝜖4

)
. We found it surprising that the spectral

sparsifier presented here is already fast enough that the classical construction [31] (with a dense random
projection matrix) does not actually improve the running time. With regards to some of the problem-specific
lower bounds in [20], Theorem 1.1 reduces the oracle complexity of approximating maximum cut by a
𝑂

(
log 𝑛

)
factor from 𝑂

(
𝑛 log2 𝑛

)
to 𝑂

(
𝑛 log 𝑛

)
, reducing the gap to one logarithmic factor from the Ω(𝑛)

lower bound.

1.3.2 Spectral sparsification of kernels

In this section, we give an overview of the algorithmic results for kernel graphs. To emphasize the high-level
ideas, we give simplified bounds here, deferring the detailed versions of the theorems to later sections. The
algorithms apply to smooth kernels, defined in Section 4.1, and essentially the same as the notion defined by
[4]. Smoothness is parametrized by a value 𝑡 > 0. Loosely speaking, a kernel is 𝑡-smooth if 𝜅(𝑥, 𝑦) decays at
a rate of roughly 1/‖𝑥 − 𝑦‖𝑡 .

Theorem 1.3. Let 𝜅 : R𝑑 × R𝑑 → R≥0 be a smooth kernel, and consider a kernel graph 𝐺 𝜅 over 𝑛 points in
R𝑑 . Let 𝑄 denote the time to query the kernel. With high probability, one can construct a spectral sparsifier
of 𝐺 𝜅 with �̃�

(
𝑛/𝜖2) weighted edges in �̃�

(
𝑛(𝑑 +𝑄)/𝜖2) randomized time.1

The algorithm underlying Theorem 1.3 is based on importance sampling, where we first assign an
“importance” to each edge, and then sample �̃�

(
𝑛/𝜖2) edges in proportion to their importance. Each time an

edge is sampled, we add the edge to the graph with the edge weight scaled up in inverse proportion to the
sampling probability (so that the randomized weight of each edge is unbiased). From the perspective of
spectral graph theory, the “importance” of an edge is given by its effective resistance (see Section 2). To

1Here “�̃� (· · ·)” hides logarithmic dependencies on the number of points, the multiplicative spread of the distances between them,
an exponential dependence on 𝑡, and a linear dependence on a second smoothness parameter 𝛽. For 𝑡 = 1, there is no dependence
on spread. The exponential dependence on 𝑡 is necessary by standard complexity assumptions [4]. “High probability” signifies a
probability of error ≤ 1/poly(𝑛).
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apply this technique to kernel-weighted graphs, we need to obtain overestimates on the product of the kernel
and the effective resistance between every pair of vertices. To obtain 𝑂

(
𝑛2) such values in time proportional

to 𝑛, we need to obtain these overestimates implicitly. The number of edges sampled is proportional to the
sum of overestimates. To keep the output sparse, we want to keep the overestimates as tight as possible in the
aggregate.

The algorithm to overestimate all effective resistances for 𝑡 = 1 is remarkably simple. Let 𝑎 ∼ N𝑑 be a
random 𝑑-dimensional vector where each coordinate is independently distributed as a standard Gaussian, and
consider the random line embedding 𝑣 ↦→ 〈𝑎, 𝑣〉. Based on this embedding, we can assign a “rank” to each
vertex enumerating the vertices 𝑣 ∈ 𝑉 in increasing order of 〈𝑎, 𝑣〉. For each edge 𝑒 = {𝑢, 𝑣}, consider the
difference in ranks of its endpoints, |rank(𝑥) − rank(𝑦) |. Intuitively, if 𝜅(𝑥, 𝑦) is relatively large (relative to
other edges incident to 𝑥 or 𝑦), then ‖𝑥 − 𝑦‖ is relatively small, and we would expect |rank(𝑥) − rank(𝑦) | to
be small. Conversely, for large 𝜅(𝑥, 𝑦), we would expect |rank(𝑥) − rank(𝑦) | to be big. It is thus reasonable to
sample each edge 𝑒 = {𝑥, 𝑦} with probability inversely proportional to |rank(𝑥) − rank(𝑦) |. One can justify
this heuristic formally by proving that with constant probability, 1/|rank(𝑥) − rank(𝑦) | is a constant factor
upper bound on the product of the kernel of and the effective resistance between 𝑥 and 𝑦. (The proof of this
claim is not as simple as the algorithm.) Consequently, one can take the average of 1/|rank(𝑥) − rank(𝑦) |
over a few independent trials and scale up by a constant to obtain an upper bound on the kernel times the
effective resistance with high probability. It is easy to see that the sum of 1/|rank(𝑥) − rank(𝑦) | over all
{𝑥, 𝑦} ∈ 𝐸 is 𝑂

(
𝑛 log 𝑛

)
, and it is easy to sample edges in proportion to 1/|rank(𝑥) − rank(𝑦) | as well. Thus

one obtains a spectral sparsifier in nearly linear time.
The algorithm for larger 𝑡 is similar, except we now randomly project onto 𝑡 dimensions, and enlist the

help of some simple data structures. The data structure is a quadtree2 over the projected point sets in R𝑡 .
After building quadtrees over independent projections of the vertices, the nonuniform sampling is conducted
implicitly as follows. We choose a quadtree and a vertex uniformly at random. Out of the canonical cells
containing 𝑥 in the quadtree, we choose one cell uniformly at random. We examine this cell along with its
neighboring cells at the same level of the quadtree, and sample one vertex 𝑦 from these cells uniformly at
random. We then add the edge {𝑥, 𝑦} with its weight scaled up appropriately. The intuition for this scheme
is similar to the simpler setting with 𝑡 = 1. Relatively large kernels 𝜅(𝑥, 𝑦) belong to pairs 𝑥 and 𝑦 that are
close together in R𝑑 , and are more likely to be adjacent at smaller cells of the quadtree. The number of other
vertices nearby at the same resolution give (a weaker, higher-dimensional analogue of) the “difference in rank”
between 𝑥 and 𝑦. One can show that with fixed probability (depending on 𝑡), a single quadtree (implicitly)
obtains a overestimate (up to constants) of the kernel times the effective resistance between 𝑥 and 𝑦. Building
a few quadtrees over independent projections ensure we overestimate each effective resistance with high
probability.

Density estimation. Recall the high-dimensional density estimation problem addressed by previous work
[4, 14]. Here we want to preprocess a set of points 𝑉 , such that given a query point 𝑞, we can estimate the
sum of kernel evaluations between 𝑞 and 𝑉 ,

∑
𝑣∈𝑉 𝜅(𝑞, 𝑣), with much fewer than |𝑉 | kernel evaluations. The

spectral sparsifier in Theorem 1.3 naturally implies an algorithm for kernel density estimation. Given a query
point 𝑞, consider the kernel-weighted graph over the augmented vertex set 𝑉 + 𝑞. The density of 𝑞 w/r/t 𝑉
is precisely the weighted degree of 𝑞 in this graph. Suppose we build a spectral sparsifier over 𝑉 + 𝑞. The
spectral sparsifier preserves all of the cuts, and in particular preserves the cut induced by the singleton set {𝑞}
– which is the degree of 𝑞, which is the density of 𝑉 at point 𝑞. Of course, the kernel density at 𝑞 does not
take into consideration any of the edges between points in 𝑉 , so the effort to sparsify these internal edges can
be omitted. This leads to the following theorem, proven in Section 4.6.

2Here enters a logarithmic dependence on the spread.
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Theorem 1.4. In �̃� (𝑛) preprocessing time and space, one can compute (1 ± 𝜖)-multiplicative approximations
to kernel densities in �̃�

(
1/𝜖2) time.

While the lower order terms are omitted here, the detailed bounds of Theorem 1.4 (given in Theorem 4.18
in Section 4.6) actually improve the state of the art in [4]. For obtaining (1 ± 𝜖)-approximations with high
probability, the preprocessing time and space are both reduced by a 𝑂

(
1/𝜖2)-multiplicative factor. The query

times are similar.

1.4 Applications

The potential applications of the spectral sparsifiers are many, given the plethora of applications of spectral
graph theory [34, 42, 45]. For example, Laplacians encode the values of all cuts. Hence a spectral
approximation implies that all cuts are approximately preserved. Any cut-based optimization algorithm –
such as for max flow, sparsest cut, or graph partitioning – can be applied to the sparse spectral approximation
to give an approximation on the original, dense, geometric graph. We note that recent developments have lead
to nearly linear time graph algorithms for many of these problems, which leads to graph algorithms for metric
and kernel weighted graphs with running times proportional to the number of vertices, even though these
graphs are dense.

The Laplacian is also important for spectral embeddings. Here one computes one or a few of the top or
bottom eigenvectors of the Laplacian. These eigenvectors give a low-dimensional embedding of the vertices
(one coordinate per eigenvector). For applications of metric graphs, one would probably use the eigenvectors
corresponding to the largest eigenvalues, where points far away in the metric are also spread out by the
eigenvectors. For many applications of kernel weighted graphs, where the kernel is used to measure similarity,
one might use the eigenvectors corresponding to the smallest eigenvalues instead. Then pairs of vertices
with large kernels / greater similarity are placed closer together. The embedding is useful for clustering
and visualization, among other applications [10, 37]. Rather than compute a spectral embedding over the
complete graph with all pairs of kernel evaluations, one can first apply Theorem 1.3 to compute a sparse graph
with approximately the same spectrum, and embed this graph instead. In general, the spectral sparsifiers
reduce the spectral analysis of dense geometric graphs to sparse graphs in nearly linear time, enabling a broad
class of spectral analyses to run in time proportional to the number of vertices rather than the number of pairs
of vertices.

1.5 Additional related work

There is an extensive literature on how to solve (or approximate) optimization problems on point sets in low
dimensions, often employing some sort of grid or quadtree over the low-dimensional space. We refer to the
monograph by Har-Peled [25] for a broad overview of many such problems and techniques. We highlight
a few examples. Spanners are weighted auxiliary graphs, generally sparse, whose shortest path metrics
approximate an underlying metric. As a sparse graph approximating certain properties of the geometric graph,
spanners are similar in spirit to the spectral sparsifiers here. One can construct spanners over Euclidean
point sets with roughly 𝑛 edges (for small 𝑑) via the well-separated pair decomposition [13] (among other
approaches [39, 47]). We note that [13] was also motivated by 𝑛-body problems and that well-separated
pair decompositions have many other applications; see [25, Chapter 3]. Well-separated pair decompositions
can also be constructed from quad trees [26]. The celebrated approximation schemes for Euclidean TSP
[3, 36] (and other network design problems) are also based on low-dimensional grids. Here hierarchical
cells are used to discretize the solution space and impose a hierarchy of subproblems suitable to dynamic
programming. The results in this work do not require the input points to be in low-dimension. For sparsifying
kernels, we do take advantage of the random projections of the point sets lying in low-dimension, and then
benefit from the general ideas and techniques developed in low-dimensional settings.
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For kernels in high dimensions, the general strategy of randomly projecting the point set into a lower-
dimension space to generate non-uniform sampling probabilities starts with [14] and recurs throughout the
recent developments on this problem [4, 6, 15, 41]. The ideas are inspired by (or otherwise use directly)
locality sensitive hashing, which was introduced by [30] and is an important technique for approximating
high-dimensional problems.

1.6 Independent work

Finally, we would like to mention independent work by Alman, Chu, Schild, and Song [2], which is strongly
related to this work. They derive some similar algorithmic results for kernels among other functions of
Euclidean distances, and also give hardness results. We defer a more detailed discussion to a future version of
this paper, and recommend [2] to the interested reader.

1.7 Organization

The rest of this work is organized as follows. In Section 2, we given preliminaries on spectral graph theory
useful to both the metric and kernel sparsification algorithms. In Section 3, we define and analyze the spectral
sparsification algorithm for metrics. In Section 4, we define and analyze the spectral sparsification algorithm
for kernels. Section 4.6 contains the kernel density estimation algorithm derived form the spectral sparsifier.
Section 3 and Section 4 can be read separately. They are unified in motivation by the spectral sparsification
framework, but the technical challenges and techniques to overcome them in each setting are very different.

2 Preliminaries

In this section we give preliminary background on spectral graph theory that is used for both metrics and
kernels. Additional background can be found in [17, 42].

Given an undirected graph 𝐺 = (𝑉, 𝐸) with nonnegative edge weights 𝑤 : 𝐸 → R≥0, the Laplacian of
𝑮, denoted 𝐿𝐺 , is the positive semidefinite matrix 𝐿𝐺 ∈ R𝑉×𝑉 defined by the quadratic form

〈𝑥, 𝐿𝑥〉 =
∑︁

𝑒={𝑢,𝑣 }∈𝐸
𝑤(𝑒) (𝑥𝑢 − 𝑥𝑣 )2

Given two graphs 𝐺 and 𝐻 over the same vertex set, 𝐻 is said to be a (1 ± 𝝐)-spectral approximation of
𝐺 if

(1 − 𝜖)𝐿𝐺 � 𝐿𝐻 � (1 + 𝜖)𝐿𝐺 .

That is, for any vector 𝑥 ∈ R𝑉 , we have

(1 − 𝜖)〈𝑥, 𝐿𝐺𝑥〉 ≤ 〈𝑥, 𝐿𝐻 𝑥〉 ≤ (1 + 𝜖)〈𝑥, 𝐿𝐺𝑥〉.

The goal of spectral sparsification is to take an undirected graph 𝐺 and compute a (1 ± 𝜖)-spectral approxi-
mation 𝐻 with as few edges as possible. Spielman and Srivastava [43] showed that every graph on 𝑛 vertices
has a (1 ± 𝜖)-spectral approximation with 𝑂

(
𝑛 log(𝑛)/𝜖2) edges, which was then reduced further to 𝑂

(
𝑛/𝜖2)

edges [8]. Moreover, these sparsifiers can be computed in nearly linear time [35, 43].
Given a graph 𝐺 with Laplacian 𝐿𝐺 , the effective resistance of an edge 𝑒 = {𝑢, 𝑣}, denoted (eff. resist. 𝑒),

is defined by

1
(eff. resist. 𝑒) = min

{
〈𝑥, 𝐿𝑥〉 : 𝑥 ∈ R𝑉 , 𝑥𝑢 = 0, 𝑥𝑣 = 1

}
.
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To sparsify kernel weighted graphs, following [43], we sample edges with probabilities proportional to their
effective resistance. For the sake of efficiency, we prefer to sample the edges with replacement, rather than
sample each edge separately as in [43]. In particular, we will use the following lemma.

Lemma 2.1. Let 𝐺 = (𝑉, 𝐸) be a weighted undirected graph with 𝑛 vertices, and for each 𝑒 ∈ 𝐸 , let

𝑝𝑒 ≥ (weight of 𝑒) (eff. resist. 𝑒). (1)

Let 𝑚 = 𝛼
∑

𝑒 𝑝𝑒 for 𝛼 = 𝑂
(
log(𝑛)/𝜖2) . Consider the randomized weighted graph 𝐻 where we sample 𝑚

edges with replacement in proportion to {𝑝𝑒, 𝑒 ∈ 𝐸}, where for each sampled edge 𝑒, we add 𝑒 to 𝐻 with
weight scaled up by 1/𝛼𝑝𝑒. Then with high probability, 𝐻 is a (1 ± 𝜖)-spectral sparsifier.

Proof. We include this proof for the sake of completeness. For each edge 𝑒, let 𝐿𝑒 denote the (weighted)
Laplacian of the edge 𝑒. Let 𝐿𝐺 =

∑
𝑒 𝐿𝑒 denote the Laplacian of 𝐺. Note that for each edge 𝑒, 𝑝−1

𝑒 𝐿𝑒 � 𝐿𝐺 .
Indeed, for any vector 𝑥 ∈ R𝑉 , we have〈

𝑥,

(
𝑝−1
𝑒 𝐿𝑒

)
𝑥

〉
=
(weight of 𝑒)

𝑝𝑒
(𝑥𝑢 − 𝑥𝑣 )2

(a)
≤ 1
(eff. resist. 𝑒) (𝑥𝑢 − 𝑥𝑣 )

2 (b)≤ 〈𝑥, 𝐿𝑥〉. (2)

Here (a) is by choice of 𝑝𝑒 per inequality (1), and (b) is by definition of effective resistance. For 𝑖 = 1, . . . , 𝑚,
let 𝑒𝑖 be the 𝑖th sampled edge, and let 𝐿𝑖 denote the Laplacian of this reweighted edge. Let 𝐿𝐻 =

∑
𝑖 𝐿𝑖

denote the Laplacian of 𝐻. 𝐿𝐻 is a random matrix.
Let 𝑃 =

∑
𝑒∈𝐸 𝑝𝑒. For each 𝑖 ∈ [𝑚], we have 𝐿𝑖 = 𝐿𝑒/𝛼𝑝𝑒 with probability 𝑝𝑒/𝑃 for each edge 𝑒. In

expectation, we have

E [𝐿𝑖] =
∑︁
𝑒∈𝐸

𝑝𝑒

𝑃
·
(

1
𝛼𝑝𝑒

)
𝐿𝑒 =

1
𝛼𝑃

𝐿𝐺 =
1
𝑚
𝐿𝐺 .

Summing over all 𝑖, the expectation of 𝐿𝐻 is E [𝐿𝐻 ] =
∑𝑚

𝑖=1 E [𝐿𝑖] = 𝐿𝐺 . We also have

𝐿𝑖 =

(
1

𝛼𝑝𝑒𝑖

)
𝐿𝑒𝑖

(c)
� 𝜖2

𝑐 log 𝑛
𝐿𝐺

for some sufficiently large constant 𝑐 deterministically. Here (c) is by inequality (2). The claim now follows
from matrix concentration (see, e.g., [42, 46]). �

Of course, one can compose Lemma 2.1 with sparsifiers in [8, 35] to reduce the number of edges in 𝐻 to
𝑂

(
𝑛/𝜖2) .

3 Metrics

In this section, we design and analyze algorithms for computing spectral sparsifiers of metrics. We first give a
high level overview of the results.

Let 𝑑 : 𝑉 ×𝑉 → R≥0 be a metric on a set of 𝑛 points 𝑉 . We interpret 𝑑 as a complete undirected graph
on 𝑉 , denoted 𝐺𝑑 = (𝑉, 𝐸), with edge weights given by the metric 𝑑. For an edge 𝑒 = {𝑢, 𝑣} ∈ 𝐸 , we let
𝑑 (𝑒) denote the distance between its endpoints in the metric, 𝑑 (𝑢, 𝑣). Let 𝐷 =

∑
𝑒∈𝐸 𝑑 (𝑒) denote the sum of

distances over all pairs of points.
The algorithms in this work are based on importance sampling. Generally speaking, importance sampling

reduces the variance in uniform sampling by sampling “more important” objects with high probability. For
metrics, we sample edges in proportion to their edge lengths. It remains to show (a) how to estimate the
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apx-metric-importance(𝑑 : 𝑉 ×𝑉 → R>0)

1. let 𝐹 sample each edge with probability 𝑝 = 8 log(𝑛)/(𝑛 − 1)

2. for each vertex 𝑢

A. 𝑌𝑢 ←
1

log 𝑛
(sum of distances of sampled edges incident to 𝑢)

// for each edge 𝑒 = {𝑢, 𝑣} denote 𝑌𝑒 = 𝑌𝑢 + 𝑌𝑣

3. return 𝑌.

Figure 1: A subroutine for overestimating the length of every edge with 𝑂
(
𝑛 log 𝑛

)
total queries and constant

overhead in the total distance (see Theorem 3.1).

importance/length of each edge with 𝑂
(
𝑛 log 𝑛

)
total queries, and more importantly (b), that the edge lengths

are a good measure of importance in the spectral sense.
The first step (a) assigns overestimates on the length of every edge, while keeping the total sum of

overestimates comparable to the total sum of distances. The algorithm, apx-metric-importance, is very
simple. We uniformly sample 𝑂

(
𝑛 log 𝑛

)
edges in expectation. For each edge 𝑒, we sum the distances of all

sampled edges incident to 𝑒, and scale down by log(𝑛). This will overestimate each 𝑒 with high probability.
Because each sampled edge contributes a log(𝑛)-fraction of its own distance to all the incident edges, the
sum of estimates is at most a constant factor greater than the full sum of distances with high probability. The
formal bounds are as follows. The formal proof (which is not much longer than this paragraph) is given in
Section 3.1.

Theorem 3.1. With high probability, apx-metric-importance makes 𝑂
(
𝑛 log 𝑛

)
queries and returns values

𝑌𝑒 for 𝑒 ∈ 𝐸 satisfying the following properties.

(i) For all 𝑒 ∈ 𝐸 , 𝑌𝑒 ≥ 𝑑 (𝑒).

(ii)
∑︁
𝑒

𝑌𝑒 ≤ 𝑂 (1)𝐷.

The next part of the algorithm samples edges with replacement in proportion to the estimates 𝑌𝑒. More
precisely, we apply the sample procedure from Lemma 2.1, where each 𝑝𝑒 is taken in proportion to 𝑌𝑒. To
show that this process is well-concentrated, we have to analyze the effective resistances of the edges. We
obtain the following uniform bound on the effective resistance of all edges in a metric. The proof of the
following theorem is given in Section 3.2.

Theorem 3.2. Let 𝐺 = (𝑉, 𝐸) be a complete undirected graph with edge weights given by a metric 𝑑. Let
𝐷 =

∑
𝑒∈𝐸 𝑑 (𝑒) be the sum of distances over all pairs of vertices. For all edges 𝑒 ∈ 𝐸 ,

(effective resistance of 𝑒) ≤ 𝑐𝑛

𝐷

for some universal constant 𝑐 > 0.

The overall algorithm, given in Figure 2, is as follows. We obtain estimates 𝑌𝑒 ≥ 𝑑 (𝑒) for each edge (by
Theorem 3.1). Let

𝑝𝑒 = 𝑂 (1)𝑌𝑒
𝑛∑
𝑒 𝑌𝑒

.
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metric-spectral-sparsifier(𝑑 : 𝑉 ×𝑉 → R≥0, 𝜖)

1. 𝛼← Ω

(
𝜖2/log 𝑛

)
where 𝑛 = |𝑉 |, 𝑤 ← 0𝐸

2. 𝑌 ← apx-metric-importance(𝑑)

3. apply Lemma 2.1 and importance sample 𝑂

(
𝑛 log (𝑛)/𝜖2

)
edges with replacement w/r/t 𝑝𝑒 =

𝑐𝑌𝑒𝑛∑
𝑒 𝑌𝑒

for 𝑒 ∈ 𝐸, for some universal constant 𝑐 > 0

Figure 2: A spectral sparsifier for metrics taking𝑂
(
𝑛 log(𝑛)/𝜖2) time and queries to produce a (1 ± 𝜖)-spectral

approximation with high probability (see Theorem 3.3).

Then with high probability, for all 𝑒 ∈ 𝐸 , we have

𝑝𝑒 = 𝑂 (1)𝑌𝑒
𝑛∑
𝑒 𝑌𝑒

(d)
≥ 𝑂 (1)𝑑 (𝑒) 𝑛

𝐷

(e)
≥ 𝑑 (𝑒) (eff. resist. 𝑒).

where (d) is by Theorem 3.1 and (e) is by Theorem 3.2. By Lemma 2.1, importance sampling 𝑂
(

log (𝑛)
𝜖 2

∑
𝑒 𝑝𝑒

)
edges with replacement in proportion to 𝑝𝑒 returns a (1 ± 𝜖)-spectral sparsifier with high probability. We
have

∑
𝑒 𝑝𝑒 = 𝑂 (𝑛), and sampling in proportion to 𝑝𝑒 is the same as sampling in proportion to 𝑌𝑒 and easy to

generate in 𝑂
(
log 𝑛

)
time per edge3. Thus we have the following.

Theorem 3.3. With high probability, metric-spectral-sparsifier returns a weighted graph with
𝑂

(
𝑛 log(𝑛)/𝜖2) edges that is a (1 ± 𝜖)-spectral approximation of 𝑑 in 𝑂

(
𝑛 log(𝑛)

(
log(𝑛) +𝑄

) )
randomized

time, where 𝑄 denotes an oracle query to the metric.

Besides metrics. Like [20], we observe that these techniques extend to nonnegative symmetric functions
𝑑 : 𝑉 × 𝑉 → R≥0 that are not metrics, but still similar to metrics. For 𝛼 ≥ 1, we say that 𝑑 is an
𝜶-approximate metric if it satisfies the triangle inequality up to any 𝛼-multiplicative factor in the sense that
𝑑 (𝑎, 𝑏) ≤ 𝛼(𝑑 (𝑎, 𝑐) + 𝑑 (𝑐, 𝑏)) for any three points 𝑎, 𝑏, 𝑐. ([20] calls this an 𝛼−1-metric.) One can retrace
the arguments for metrics and obtain similar results with a multiplicative increase of 𝛼 in the bounds.

3.1 Metric importance of edges

In this section, we analyze the subroutine apx-metric-importance. The goal of apx-metric-importance
is to assign an overestimate on the length of each edge (claim (i)), while keeping the sum of overestimated
length as close to the true sum of lengths as possible (claim (ii)).

Lemma 3.4. For all 𝑒 ∈ 𝐸 , we have 𝑌𝑒 < 𝑑 (𝑒) with probability of error ≤ 1/poly(𝑛).

Proof. Let 𝑝 = Θ
(
log(𝑛)/𝑛

)
be the probability with which each edge is sampled. Let 𝑒 = {𝑎, 𝑏}. For any

third point 𝑐 ∈ 𝑉 \ 𝑒, we have

max{𝑑 (𝑒), 𝑑 (𝑎, 𝑐)} +max{𝑑 (𝑒), 𝑑 (𝑐, 𝑏)} ≥ 𝑑 (𝑎, 𝑐) + 𝑑 (𝑐, 𝑏)
(a)
≥ 𝑑 (𝑒)

by (a) the triangle inequality. Even if we truncate all incident edges to contribute at most 𝑑 (𝑒) to 𝑌𝑒, the
expected sum is ≥ 𝑝𝑛𝑑 (𝑒) = Ω

(
log(𝑛)𝑑 (𝑒)

)
. W/r/t the truncated distances, each edge contributes at most a

Θ
(
log 𝑛

)
-fraction to the expected sum. The claim now follows from standard concentration bounds. �

3Here we point out that sampling an edge in proportion to 𝑌𝑒 is the same as sampling two endpoints in proportion to the vertex
sums 𝑌𝑢 .
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Lemma 3.5.
∑

𝑒 𝑌𝑒 ≤ 𝑂 (1)𝐷 with high probability.

Proof. Each sampled edge 𝑒 contributes at most 𝑛𝑑 (𝑒)/log(𝑛) to the total sum of distances, and
∑

ℎ 𝑑 (ℎ) ≥
𝑛𝑑 (𝑒) for all 𝑒 by the triangle inequality. The claim follows from standard concentration bounds. �

3.2 Spectral importance of edges

In this section, we prove Theorem 3.2, which upper bounds the effective resistance of an edge in a metric. We
first restate Theorem 3.2 for convenience.

Theorem 3.2. Let 𝐺 = (𝑉, 𝐸) be a complete undirected graph with edge weights given by a metric 𝑑. Let
𝐷 =

∑
𝑒∈𝐸 𝑑 (𝑒) be the sum of distances over all pairs of vertices. For all edges 𝑒 ∈ 𝐸 ,

(effective resistance of 𝑒) ≤ 𝑐𝑛

𝐷

for some universal constant 𝑐 > 0.

Proof. Fix a vector 𝑥 ∈ R𝑉 . For an edge 𝑓 = {𝑐, 𝑑}, we denote

𝑥2( 𝑓 ) = 𝑥2(𝑐, 𝑑) def
= (𝑥𝑐 − 𝑥𝑑)2.

We want to show that ∑︁
𝑓 ∈𝐸

𝑑 ( 𝑓 )𝑥2( 𝑓 ) ≥ 𝑐
𝐷𝑥2(𝑒)

𝑛

for some universal constant 𝑐 > 0.
We first give a high-level overview of the argument. For the sake of conversation, suppose that 𝑥2(𝑒) = 1.

We want to show that the total amount of potential, over all edges, is roughly the total distance in the metric
divided by 𝑛. The analysis partitions 𝐸 and argues that in each part we have the desired inequality. The parts
are first generated by repeatedly selecting the longest “far” edge 𝑓 ≠ 𝑒 in the graph (where “far” will be
defined shortly), and select the set 𝐹 of all edges incident to 𝑓 \ 𝑒.

Each such 𝑓 generates one part and then the points in 𝑓 \ 𝑒 (and all incident edges 𝐹) are removed from
the metric. When there are no “far” edges left, then we analyze all of the remaining “close” edges (which
includes 𝑒) as the final part of the decomposition.

The edges are classified as either “close” or “far” from 𝑒 as follows. First, let 𝐵𝑎 be the ball of radius
𝑑 (𝑒)/4 centered at 𝑎, and let 𝐵𝑏 be the ball of radius 𝑑 (𝑒)/4 centered at 𝑏. We call an edge 𝑓 far if 𝑓 \ 𝑒 is
not contained in 𝐵𝑎 and not contained in 𝐵𝑏. Otherwise we call 𝑓 close.

Far edges. Close edges.
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Far edges and close edges have different properties that make them useful for the decomposition. The proofs
of these properties are detailed and obscure some of the high-level ideas of the proof. For the moment, we
state the main observations about far and close edges required to prove the overall theorem, and return to their
proofs in later sections.

For far edges, we state two lemma’s. The proofs for these claims are given in Section 3.2.1 below. The
first lemma relates the potential of 𝑓 and its associated edges between 𝑓 and 𝑒 to the distance between the
endpoints of 𝑓 .

Lemma 3.6. Let 𝑓 be a far edge, and let 𝐹 be the set of edges with both endpoints in 𝑓 ∪ 𝑒. Then∑︁
ℎ∈𝐹,ℎ≠𝑒

𝑑 (ℎ)𝑥2(ℎ) ≥ 𝑐 max{𝑑 (𝑒), 𝑑 ( 𝑓 )}𝑥2(𝑒)

for some universal constant 𝑐 > 0.

The second lemma observes that as long as 𝑓 is the largest far edge from 𝑒, its edge length compares favorably
to the length of any edge incident to 𝑓 \ 𝑒.

Lemma 3.7. Let 𝑓 be the largest edge such that 𝑓 \ 𝑒 is not contained in 𝐵𝑎 and not contained in 𝐵𝑏. Let ℎ
be any edge incident to 𝑓 and not incident to 𝑒. Then

𝑑 (ℎ) ≤ 𝑐 max{𝑑 ( 𝑓 ), 𝑑 (𝑒)}.

for some universal constant 𝑐 > 0.

When all the edges are close, then the following lemma states that the desired inequality already holds.
Lemma 3.8 is proven below in Section 3.2.2.

Lemma 3.8. Suppose every edge is close. Then∑︁
𝑓 ∈𝐸

𝑑 ( 𝑓 )𝑥2( 𝑓 ) ≥ 𝑐
𝐷𝑥2(𝑒)

𝑛
.

for some universal constant 𝑐 > 0.

We now prove the theorem assuming Lemma 3.6, Lemma 3.7, and Lemma 3.8 hold. Let 𝐸0 = 𝐸 and
𝑉0 = 𝑉 . For each 𝑖 ∈ N, as long as there is a far edge in 𝐸𝑖−1, let 𝑓𝑖 be the largest far edge in 𝐸𝑖−1, let 𝐹𝑖 be
the set of edges in 𝐸𝑖−1 incident to 𝑓𝑖 \ 𝑒, let 𝐸𝑖 = 𝐸𝑖−1 \ 𝐹𝑖 , and let 𝑉𝑖 = 𝑉𝑖−1 \ ( 𝑓𝑖 \ 𝑒). Suppose this process
selects 𝑘 far edges 𝑓1, . . . , 𝑓𝑘 and then there are no far edges left in 𝐸𝑘 = 𝐸 \ (𝐹1 ∪ · · · ∪ 𝐹𝑘).

For each 𝑖 ∈ [𝑘], we have∑︁
ℎ∈𝐹𝑖

𝑑 (ℎ)𝑥2(ℎ)
(a)
≥ 𝑐′max{𝑑 (𝑒), 𝑑 ( 𝑓𝑖)}𝑥2(𝑒)

(b)
≥ 𝑐′′

𝑛

∑︁
ℎ∈𝐹𝑖

𝑑 (ℎ)𝑥2(𝑒) (3)
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for some universal constants 𝑐′, 𝑐′′ > 0. Here (a) is by Lemma 3.6 and (b) is by Lemma 3.7. For the remaining
edges 𝐸𝑘 , which are all close, we have∑︁

ℎ∈𝐸𝑘

𝑑 (ℎ)𝑥2(ℎ) ≥ 𝑐′′′

𝑛

∑︁
ℎ∈𝐸𝑘

𝑑 (ℎ)𝑥2(𝑒). (4)

for some universal constant 𝑐′′′ by Lemma 3.8. Thus∑︁
ℎ∈𝐸

𝑑 (ℎ)𝑥2(ℎ) =
𝑘∑︁
𝑖=1

( ∑︁
ℎ∈𝐹𝑖

𝑑 (ℎ)𝑥2(ℎ)
)
+

∑︁
ℎ∈𝐸𝑘

𝑑 (ℎ)𝑥2(ℎ)

(c)
≥ 𝑐′′𝑥2(𝑒)

𝑛

𝑘∑︁
𝑖=1

∑︁
ℎ∈𝐹𝑖

𝑑 (ℎ) + 𝑐′′′𝑥2(𝑒)
𝑛

∑︁
ℎ∈𝐸𝑘

𝑑 (ℎ)

≥ 𝑐𝐷𝑥2(𝑒)
𝑛

,

for some universal constant 𝑐 > 0, as desired. Here (c) applies inequalities (3) and (4). �

3.2.1 Analysis of far edges

In this section we prove the two lemma’s regarding far edges. We first prove Lemma 3.6 and restate the claim
for the reader’s convenience.

Lemma 3.6. Let 𝑓 be a far edge, and let 𝐹 be the set of edges with both endpoints in 𝑓 ∪ 𝑒. Then∑︁
ℎ∈𝐹,ℎ≠𝑒

𝑑 (ℎ)𝑥2(ℎ) ≥ 𝑐 max{𝑑 (𝑒), 𝑑 ( 𝑓 )}𝑥2(𝑒)

for some universal constant 𝑐 > 0.

Proof. We have three cases.

(Case 1) 𝑓 has length 𝑑 ( 𝑓 ) > 2𝑑 (𝑒)

Then there is some endpoint 𝑐 ∈ 𝑓 with distance at least 𝑑 ( 𝑓 )/4 from both 𝑎 and 𝑏. We have

𝑑 (𝑎, 𝑐) (𝑥𝑎 − 𝑥𝑐)2 + 𝑑 (𝑏, 𝑐) (𝑥𝑏 − 𝑥𝑐)2
(a)
≥ 𝑑 ( 𝑓 )

4

(
(𝑥𝑎 − 𝑥𝑐)2 + (𝑥𝑏 − 𝑥𝑐)2

)
(b)
≥ 𝑑 ( 𝑓 ) (𝑥𝑎 − 𝑥𝑏)2

4
(5)

by (a) choice of 𝑐 and (b) because the minimum over 𝑥𝑐 is attained at the midpoint 𝑥𝑐 = (𝑥𝑏 + 𝑥𝑎)/2.

(Case 2) 𝑓 has length 𝑑 ( 𝑓 ) ≤ 2𝑑 (𝑒), and some endpoint outside both 𝐵𝑎 and 𝐵𝑏.

13



Let 𝑐 be this endpoint. Then 𝑑 (𝑎, 𝑐), 𝑑 (𝑐, 𝑏) ≥ 𝑑 (𝑒)/4, and similar to the derivation in line (5) above, we
have

𝑑 (𝑎, 𝑐) (𝑥𝑎 − 𝑥𝑐)2 + 𝑑 (𝑏, 𝑐) (𝑥𝑏 − 𝑥𝑐)2 ≥
𝑑 (𝑒)

4

(
(𝑥𝑎 − 𝑥𝑐)2 + (𝑥𝑏 − 𝑥𝑐)2

)
≥ 𝑑 (𝑒)𝑥2(𝑒)

8
.

Moreover, 𝑑 (𝑒) ≥ 𝑑 ( 𝑓 )/2.

(Case 3) 𝑓 has length 𝑑 ( 𝑓 ) ≤ 4𝑑 (𝑒), one endpoint in 𝐵𝑎, and one endpoint in 𝐵𝑏.

𝑓 must be disjoint from 𝑒, since otherwise 𝑓 \ 𝑒 would be contained in 𝐵𝑎 or contained in 𝐵𝑏. Let 𝑐 be the
endpoint of 𝑓 in 𝐵𝑎 and let 𝑑 be the endpoint of 𝑓 in 𝐵𝑑 . Then

𝑑 (𝑎, 𝑑) (𝑥𝑎 − 𝑥𝑐)2 + 𝑑 ( 𝑓 )𝑥2( 𝑓 ) + 𝑑 (𝑏, 𝑐) (𝑥𝑐 − 𝑥𝑏)2

(c)
≥ 𝑑 (𝑒)

2

(
(𝑥𝑎 − 𝑥𝑑)2 + (𝑥𝑐 − 𝑥𝑑)2 + (𝑥𝑐 − 𝑥𝑏)2

)
(d)
≥ 𝑑 (𝑒)

6
(𝑥𝑎 − 𝑥𝑏)2.

(c) is because each distance has length at least 𝑑 (𝑒)/2, because each edge being measured has one endpoint in
𝐵𝑎 and the other in 𝐵𝑏. (d) minimizes over 𝑥𝑐 and 𝑥𝑑 . Moreover, 𝑑 (𝑒) ≥ 𝑑 ( 𝑓 )/2. �

Next we prove Lemma 3.7, and first restate the claim for the reader’s convience.

Lemma 3.7. Let 𝑓 be the largest edge such that 𝑓 \ 𝑒 is not contained in 𝐵𝑎 and not contained in 𝐵𝑏. Let ℎ
be any edge incident to 𝑓 and not incident to 𝑒. Then

𝑑 (ℎ) ≤ 𝑐 max{𝑑 ( 𝑓 ), 𝑑 (𝑒)}.

for some universal constant 𝑐 > 0.

Proof. If ℎ \ 𝑒 is not contained in 𝐵𝑎 and not contained in 𝐵𝑏, then we have 𝑑 (ℎ) ≤ 𝑑 ( 𝑓 ) by choice of ℎ.
Otherwise, if ℎ \ 𝑒 is contained in 𝐵𝑎, then the endpoints of ℎ are contained in 𝐵𝑎 ∪ 𝐵𝑏, so 𝑑 (ℎ) ≤ (3/2)𝑑 (𝑒).

�

3.2.2 Analysis of close edges

For the final part of our analysis, we prove Lemma 3.8 regarding the contribution to the potential from close
edges.

Lemma 3.8. Suppose every edge is close. Then∑︁
𝑓 ∈𝐸

𝑑 ( 𝑓 )𝑥2( 𝑓 ) ≥ 𝑐
𝐷𝑥2(𝑒)

𝑛
.

for some universal constant 𝑐 > 0.
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Proof. Let 𝑈 = 𝑉 − 𝑒 be the vertices besides the endpoints of 𝑒, and let 𝑘 = 𝑛 − 2 = |𝑈 | be its cardinality. We
first claim the following.

Claim 1. Either 𝑈 ⊂ 𝐵𝑎 or 𝑈 ⊂ 𝐵𝑏.

If not, and there is one such vertex 𝑐 is closer to 𝑎, and another such vertex 𝑑 is closer to 𝑏, then {𝑐, 𝑑} would
be a far edge, a contradiction.

Without loss of generality suppose 𝑈 ⊂ 𝐵𝑎.

We now claim that each point in 𝑈 contributes energy proportional to the distance from 𝑢, in the following
sense.

Claim 2. For all 𝑢 ∈ 𝑈,

𝑑 (𝑎, 𝑢)𝑥2(𝑎, 𝑢) + 𝑑 (𝑏, 𝑢)𝑥2(𝑏, 𝑢) ≥ 𝑑 (𝑎, 𝑢)𝑥2(𝑒).

We have

𝑑 (𝑎, 𝑢) (𝑥𝑢 − 𝑥𝑎)2 + 𝑑 (𝑏, 𝑢) (𝑥𝑢 − 𝑥𝑏)2
(a)
≥ 4𝑑 (𝑎, 𝑢)

(
(𝑥𝑢 − 𝑥𝑎)2 + (𝑥𝑢 − 𝑥𝑏)2

)
(b)
≥ 𝑑 (𝑎, 𝑢) (𝑥𝑎 − 𝑥𝑏)2. (6)

Here (a) is because 𝑑 (𝑏, 𝑢) ≥ 3(.𝑎, 𝑏)/4 ≥ 3𝑑 (𝑎, 𝑢). (b) is because (𝑥𝑢 − 𝑥𝑎)2 + (𝑥𝑢 − 𝑥𝑏)2 is minimized at
𝑥𝑢 = (𝑥𝑎 + 𝑥𝑏)/2.

Now we claim the following bound on the total energy contributed by edges between 𝑈 and {𝑎, 𝑏}. For a
set of vertices 𝑆 ⊆ 𝑉 , let 𝐷𝑆 =

∑
𝑒∈𝐸 :𝑒⊆𝑆 𝑑 (𝑒) denote the sum of distances over the metric restricted to 𝑆.

Claim 3.
∑︁
𝑢∈𝑈
(𝑑 (𝑎, 𝑢)𝑥2(𝑎, 𝑢) + 𝑑 (𝑏, 𝑢)𝑥2(𝑏, 𝑢)) ≥ 1

𝑘
𝐷𝑈+𝑎𝑥

2(𝑒).

To this end, we have ∑︁
𝑢∈𝑈
(𝑑 (𝑎, 𝑢)𝑥2(𝑎, 𝑢) + 𝑑 (𝑏, 𝑢)𝑥2(𝑏, 𝑢))

(c)
≥

(∑︁
𝑢∈𝑈

𝑑 (𝑎, 𝑢)
)
𝑥2(𝑒)

(d)
=

1
𝑘

(∑︁
𝑢∈𝑈

𝑑 (𝑎, 𝑢)
)
𝑥2(𝑒) + 1

𝑘
𝐷𝑈𝑥2(𝑒) = 1

𝑘
𝐷𝑈+𝑎𝑥

2(𝑒).

Here (c) applies Claim 2 to each 𝑢 ∈ 𝑈. (d) is because

𝐷𝑈 =
1
2

∑︁
𝑢,𝑣∈𝑈

𝑑 (𝑢, 𝑣)
(e)
≤ 1

2

∑︁
𝑢,𝑣∈𝑈

𝑑 (𝑢, 𝑎) + 𝑑 (𝑎, 𝑣) = (𝑘 − 1)
∑︁
𝑢∈𝑈

𝑑 (𝑢, 𝑎),

where (e) is by the triangle inequality.
The remaining distance to account for is between 𝑏 and points in 𝑈 + 𝑎.
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Claim 4. 𝑑 (𝑒)𝑥2(𝑒) ≥ 4
5(𝑛 − 1)

∑︁
𝑢∈𝑈+𝑎

𝑑 (𝑏, 𝑢)𝑥2(𝑒).

Indeed, for each 𝑢 ∈ 𝑈 + 𝑎, we have

5
4
𝑑 (𝑒)

(f)
≥ 𝑑 (𝑒) + 𝑑 (𝑎, 𝑢)

(g)
≥ 𝑑 (𝑏, 𝑢)

where (f) is because 𝑢 ∈ 𝐵𝑎 and (g) is by the triangle inequality. Averaging over all 𝑢 ∈ 𝑈 + 𝑎 and multiplying
gives Claim 4.

To conclude the proof, we have

〈𝑥2, 𝑑〉
(h)
≥

∑︁
𝑢∈𝑈

𝑑 (𝑎, 𝑢)𝑥2(𝑎, 𝑢) + 𝑑 (𝑏, 𝑢)𝑥2(𝑎, 𝑢) + 𝑑 (𝑒)𝑥2(𝑒)

(i)
≥ 1

𝑘
𝐷𝑈+𝑎𝑥

2(𝑒) + 4
5(𝑛 − 1)

∑︁
𝑢∈𝑈+𝑎

𝑑 (𝑏, 𝑢)𝑥2(𝑒)

(j)
≥ 4

5(𝑛 − 1)𝐷𝑥2(𝑒).

(h) drops the terms for edges between points in 𝑈. (i) is by Claim 3 and Claim 4. (j) recalls that 𝑘 = 𝑛 − 2 and
observes that 𝐷𝑈+𝑎 +

∑
𝑢∈𝑈+𝑎 𝑑 (𝑏, 𝑢) = 𝐷. �

4 Spectral sparsification of kernels

In this section, we design and analyze spectral sparsifiers for geometric graphs induced by kernels.

4.1 Kernels and smoothness conditions

We study kernel functions 𝜅 : R𝑑 × R𝑑 → R≥0 that are nonnegative and symmetric (𝜅(𝑥, 𝑦) = 𝜅(𝑦, 𝑥)). We
develop algorithms for kernel functions that satisfy the following smoothness condition.

Condition 4.1. For fixed parameters 𝛽, 𝑡 > 0, and any three points 𝑥, 𝑦, 𝑧, we have

min
{

1
5
,
‖𝑥 − 𝑦‖
‖𝑥 − 𝑧‖ ,

‖𝑥 − 𝑦‖
‖𝑧 − 𝑦‖

}
≤

(
𝛽

min{𝜅(𝑥, 𝑧), 𝜅(𝑦, 𝑧)}
𝜅(𝑥, 𝑦)

)1/𝑡
.

Remark 4.1. The choice of constant, 1/5, is primarily for ease of analysis. Other constants ≤ 1 would lead to
similar results.

We only appeal to the technical conditions of Condition 4.1 in subsequent algorithms. For the remainder
of this section, we list properties and simplifications of Condition 4.1 to broaden its applicability.

First, it is easy to see that the smoothness condition in Condition 4.1 is closed under natural operations
like squaring a kernel taking the product of two kernels, with some change to the parameters (𝛽, 𝑡).

Lemma 4.2. Let 𝜅1(𝑥, 𝑦) be a kernel satisfying Condition 4.1 for parameters (𝛽, 𝑡), and let 𝜅2 be a kernel
defined by 𝜅2(𝑥, 𝑦) = 𝜅𝛼1 (𝑥, 𝑦), for some 𝛼 > 0. Then 𝜅2 satisfies Condition 4.1 with parameters (𝛽, 𝛼𝑡).

Lemma 4.3. Let 𝜅1, 𝜅2 be two kernels where 𝜅1 satisfies Condition 4.1 for parameters (𝛽1, 𝑡1) and 𝜅2(𝑥, 𝑦)
satisfies Condition 4.1 for parameters (𝛽2, 𝑡2). Then for any 𝛼 ∈ (0, 1), 𝜅(𝑥, 𝑦) def

= 𝜅1(𝑥, 𝑦) · 𝜅2(𝑥, 𝑦) satisfes
Condition 4.1 for parameters (𝛽𝛼

1 𝛽
1−𝛼
2 , 𝑡𝛼1 𝑡

1−𝛼
2 ).
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Condition 4.1 is somewhat technical as it is precisely the inequality directly invoked in the analysis. The
following conditions are more intuitive and imply Condition 4.1.

Condition 4.2. 𝜅(𝑥, 𝑦) is nonincreasing in ‖𝑥 − 𝑦‖, and for all 𝑥, 𝑦, 𝑧 with ‖𝑥 − 𝑦‖ ≤ ‖𝑥 − 𝑧‖, we have

‖𝑥 − 𝑦‖𝑡

‖𝑥 − 𝑧‖𝑡
≤ 𝛽

(
𝜅(𝑥, 𝑧)
𝜅(𝑥, 𝑦)

)1/𝑡
. (7)

Lemma 4.4. Any kernel satisfying Condition 4.2 satisfies Condition 4.1 with the same parameters (𝛽, 𝑡).

Proof. For any three points 𝑥, 𝑦, 𝑧 with (say) ‖𝑥 − 𝑧‖ ≤ ‖𝑦 − 𝑧‖.

min
{

1
5
,
‖𝑥 − 𝑦‖
‖𝑥 − 𝑧‖ ,

‖𝑥 − 𝑦‖
‖𝑦 − 𝑧‖

}
≤ min

{
‖𝑥 − 𝑦‖
‖𝑥 − 𝑦‖ ,

‖𝑥 − 𝑦‖
‖𝑥 − 𝑧‖ ,

‖𝑥 − 𝑦‖
‖𝑦 − 𝑧‖

}
(a)
≤

(
𝛽

min{𝜅(𝑥, 𝑦), 𝜅(𝑥, 𝑧), 𝜅(𝑦, 𝑧)}
𝜅(𝑥, 𝑦)

)1/𝑡

≤
(
𝛽

min{𝜅(𝑥, 𝑧), 𝜅(𝑦, 𝑧)}
𝜅(𝑥, 𝑦)

)1/𝑡

Here (a) invokes both monotonicity and inequality (7). �

Condition 4.3. 𝜅(𝑥, 𝑦) = 1/ 𝑓 (‖𝑥 − 𝑦‖) for a real-valued function 𝑓 : R→ R with the following properties:

(a) 𝑓 (𝑥) > 0 for all 𝑥 > 0.

(b) 𝑓 is nondecreasing.

(c) 𝛼𝑡 𝑓 (𝑥) ≤ 𝑓 (𝛼𝑥) for all 𝑥 > 0 and 𝛼 ∈ (0, 1).

Lemma 4.5. Suppose a kernel 𝜅 satisfies Condition 4.3 for a function 𝑓 with parameter 𝑡. Then 𝜅 satisfies
Condition 4.2 and (thereby) Condition 4.1 with parameters (1, 𝑡).

Proof. 𝜅 is nonincreasing by (b). Let 𝑥, 𝑦, 𝑧 be three points with ‖𝑥 − 𝑦‖ ≤ ‖𝑥 − 𝑧‖. Let 𝑞 = ‖𝑥 − 𝑦‖/‖𝑥 − 𝑧‖ ≤
1. We have

𝑞𝑡 = 𝑞𝑡
𝑓 (‖𝑥 − 𝑧‖)
𝑓 (‖𝑥 − 𝑧‖)

(a)
≤ 𝑓 (𝑞‖𝑥 − 𝑧‖)

𝑓 (‖𝑥 − 𝑧‖) =
𝑓 (‖𝑥 − 𝑦‖)
𝑓 (‖𝑥 − 𝑧‖) =

𝜅(𝑥 − 𝑧)
𝜅(𝑥 − 𝑦) ,

as desired. Here (a) is by property (c) of Condition 4.3. �

Lemma 4.6. Let 𝜅(𝑥, 𝑦) = 1/ 𝑓 (‖𝑥 − 𝑦‖) for a polynomial 𝑓 with nonnegative coefficients and maximum
degree 𝑡. Then 𝜅 satisfies Condition 4.3 with parameter 𝑡.

Proof. Clearly 𝑓 is positive and nondecreasing. Write 𝑓 (𝑥) = 𝑎0+𝑎1𝑥+ · · · +𝑎𝑡𝑥𝑡 , where 𝑎0, 𝑎1, . . . , 𝑎𝑡−1 ≥ 0
and 𝑎𝑡 > 0. For any 𝛼 ∈ (0, 1),

𝛼𝑡 𝑓 (𝑥) = 𝑎0𝛼
𝑡 + 𝑎1𝛼

𝑡𝑥 + · · · + 𝑎𝑡𝛼𝑡𝑥𝑡

(a)
≤ 𝑎0 + 𝑎1𝛼𝑥 + · · · + 𝑎𝑡𝛼𝑡𝑥𝑡 = 𝑓 (𝛼𝑥),

where (a) is because 𝛼𝑡 ≤ 𝛼𝑠 for all 𝑠 ≤ 𝑡. �
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Via these simpler conditions, it is easy to see that some examples of smooth kernels satisfying Condition
4.1 are the following.

𝜅(𝑥, 𝑦) = 1
‖𝑥 − 𝑦‖ (𝛽, 𝑡) = (1, 1) (8)

𝜅(𝑥, 𝑦) = 1
1 + ‖𝑥 − 𝑦‖2

(𝛽, 𝑡) = (1, 2) (9)

𝜅(𝑥, 𝑦) = 1(
1 + ‖𝑥 − 𝑦‖2

)𝛼 (𝛽, 𝑡) = (1, 2𝛼) (10)

𝜅(𝑥, 𝑦) = 1
1 + ‖𝑥 − 𝑦‖ + 1

2 ‖𝑥 − 𝑦‖2
(𝛽, 𝑡) = (1, 2) (11)

4.2 Kernel graphs and their effective resistance

Given a kernel 𝜅 : 𝑉 ×𝑉 → R≥0, the kernel graph, denoted 𝐺 𝜅 , is defined to be the undirected graph on 𝑉

where each edge 𝑒 = {𝑢, 𝑣} has weight 𝜅(𝑢, 𝑣). We let 𝐿𝜅 denote the Laplacian of 𝐺 𝜅 . Note that 𝐺 𝜅 and
𝐿𝜅 are dense, and takes 𝑂

(
𝑛2) kernel evaluations to construct explicitly. The high level goal is to randomly

construct a graph 𝐻 that closely approximates 𝐺 𝜅 using a nearly linear number of kernel valuations instead.
We want to apply Lemma 2.1 to sparsify kernel-weighted graphs. To apply Lemma 2.1, we need lower

bounds on the effective resistance of each edge. Such a lower bound should be as large as possible to minimize
the number of edges in the spectral sparsifier. At the same time, we want fairly simple lower bounds so that
we can compute all ≈ 𝑛2 bounds implicitly in time proportional to 𝑛.

Consider the kernel graph 𝐺 𝜅 = (𝑉, 𝐸, 𝜅). For each edge 𝑒 = {𝑎, 𝑏} ∈ 𝐸 , define

𝑟 (𝑒) def
= 𝜅(𝑒) + 1

2

∑︁
𝑐∉𝑒

min{𝜅(𝑎, 𝑐), 𝜅(𝑐, 𝑏)}.

Lemma 4.7. Each edge 𝑒 ∈ 𝐸 has effective resistance (eff. resist. 𝑒) ≤ 1
𝑟 (𝑒) .

Proof. Let 𝑒 = {𝑎, 𝑏}, and let 𝑥 ∈ R𝑉 with 𝑥𝑎 = 0 and 𝑥𝑏 = 1. It suffices to show that∑︁
{𝑐,𝑑 }∈𝐸

𝜅(𝑐, 𝑑) (𝑥𝑐 − 𝑥𝑑)2 ≥ 𝑟 (𝑒). (12)

For each vertex 𝑐 ≠ 𝑒, we have

(𝑥𝑎 − 𝑥𝑐)2𝜅(𝑎, 𝑐) + (𝑥𝑏 − 𝑥𝑐)2𝜅(𝑏, 𝑐)

≥
(
(𝑥𝑎 − 𝑥𝑐)2 + (𝑥𝑏 − 𝑥𝑐)2

)
min{𝜅(𝑎, 𝑐), 𝜅(𝑏, 𝑐)},

and

(𝑥𝑎 − 𝑥𝑐)2 + (𝑥𝑏 − 𝑥𝑐)2 = 𝑥2
𝑐 + (1 − 𝑥𝑐)2 ≥ 1/2.

Summing over all such 𝑐, and then including the term for 𝑒, gives the desired inequality (12). �

Remark 4.8. Obviously, Lemma 4.7 holds for any non-negative weighted graph as well.
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4.3 Gaussian random variables and projections

We use the Gaussian distribution to define random projections to lower-dimensional spaces. Recall that a
Gaussian random variable 𝑥 ∈ R with mean 𝜇 and variance 𝜎2 (denoted 𝑥 ∼ N

(
𝜇, 𝜎2)) is defined by the

probability density function

𝑥 ↦→ 1
√

2𝜋𝜎2
𝑒−(𝑥−𝜇)

2/2𝜎2
.

We abbreviate the standard normal distribution N def
= N(0, 1). For 𝑑 ∈ N, we let N𝑑 denote the 𝑑-variate

standard normal distribution. That is, 𝑥 ∼ N𝑑 denotes a random vector 𝑥 ∈ R𝑑 where each coordinate 𝑥𝑖 is
independently distributed as N𝑑 .

We employ the following well-known facts about Gaussian random variables.

Lemma 4.9. Let 𝑥 ∼ N be a Gaussian random variable, and let 𝑡 > 0. Then:

P [𝑥 ≥ 𝑡] = P [𝑥 ≤ −𝑡] ≤ 1
𝑡
√

2𝜋
𝑒−𝑡

2/2. (13)

P [0 ≤ 𝑥 ≤ 𝑡] = P [−𝑡 ≤ 𝑥 ≤ 0] ≤ 𝑡
√

2𝜋
. (14)

Lemma 4.10. Let 𝑥 ∈ R𝑑 , and let 𝑎 ∼ N𝑑 be a random Gaussian vector. Then 〈𝑎, 𝑥〉 is distributed as a
Gaussian random variable with mean 0 and standard deviation ‖𝑥‖2; that is, 〈𝑎, 𝑥〉 ∼ N

(
0, ‖𝑥‖2

)
.

We frequently apply Lemma 4.9 to the Gaussian projections in Lemma 4.10.

4.4 1-smooth kernels and line embeddings

In this section, we present and analyze the spectral sparsifier for kernel graphs 𝐺 𝜅 where the kernel satisfies
Condition 4.1 with parameters (𝛽, 1) where 𝛽 ≥ 1. The results in this section are to some extent subsumed by
subsequent results for general 𝑡, but we highlight two differences. First, the algorithm here is (in our opinion)
much simpler, and a good setting to introduce many of the new ideas, because it does not involve any data
structures. Second, and somewhat more technical, is that the algorithm in this section has no dependence on
the geometric spread of the point set.

4.4.1 Algorithm

The algorithm is called randomly-ranked-spectral-sample(𝑉,𝜅,𝛽,𝜖) (abbreviated RRSS) and pseudocode
is given in Figure 3. The algorithm was described at a high level in Section 1.3.2, and now we describe it
more precisely.

Given a set of points 𝑉 in R𝑑 , we repeat the following randomized process for 𝑖 = 1, . . . , 𝑘 where
𝑘 = 𝑂

(
log 𝑛

)
. We draw a random Gaussian vector 𝑎𝑖 ∼ N𝑑 , and compute the projections 〈𝑎𝑖 , 𝑣〉 for all

𝑣 ∈ 𝑉 . We order the points in 𝑣 in increasing order of 〈𝑎𝑖 , 𝑣〉, and let rank𝑖 (𝑣) denote their index in this
order. We then apply Lemma 2.1. We sample 𝑂

(
𝑛 log2(𝑛)/𝜖2

)
edges with replacement in proportion to∑𝑘

𝑖=1 1/|rank𝑖 (𝑥) − rank𝑖 (𝑦) | for each edge 𝑒 = {𝑥, 𝑦}. We scale up the weights of sampled edges as described
in Lemma 2.1.
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randomly-ranked-spectral-sample(𝑉,𝜅,𝛽,𝜖)

/* Abbreviated RRSS(𝑉,𝜅,𝛽,𝜖). Let 𝑛 = log |𝑉 | */

1. for 𝑖 = 1, . . . , 𝑘 = 𝑂
(
log 𝑛

)
A. draw 𝑎𝑖 ∼ N𝑑

B. order 𝑉 in increasing order of 〈𝑎𝑖 , 𝑣〉

C. let rank𝑖 (𝑣) = index of 𝑣 in this order

2. apply Lemma 2.1 and importance sample 𝑂

(
𝑛 log2 (𝑛)/𝜖2

)
edges with repetition in proportion to

𝑝𝑒 =
1

log 𝑛

𝑘∑︁
𝑖=1

1
|rank𝑖 (𝑎) − rank𝑖 (𝑏) |

for each edge 𝑒 = {𝑎, 𝑏}

Figure 3: A randomized nearly linear time algorithm for sparsifying a smooth kernel weighted graph.

4.4.2 Analysis

We now analyze RRSS. The following key lemma is the primary motivation for the algorithm. It states
that with constant probability, the difference in rank in the endpoints of an edge is an underestimate for
1/(eff. resist. 𝑒)𝜅(𝑒).

Lemma 4.11. Let 𝑒 = {𝑥, 𝑦} be an edge. Then

|rank𝑖 (𝑥) − rank𝑖 (𝑦) | ≤
𝑐1𝛽

(eff. resist. 𝑒)𝜅(𝑒) with probability 𝑐2,

where 𝑐1, 𝑐2 > 0 are universal constants.

Proof. Call a vertex 𝑧 close if max
{
〈𝑎, 𝑥 − 𝑧〉2, 〈𝑎, 𝑦 − 𝑧〉2

}
≤ ‖𝑥 − 𝑦‖2.

Claim 1. For each 𝑧 ∉ 𝑒,

P [𝑧 close] ≤ 2𝛽
min{𝜅(𝑥, 𝑧), 𝜅(𝑥, 𝑦)}

𝜅(𝑥, 𝑦) .

Without loss of generality, suppose 𝑧 is further from 𝑥 than 𝑦 (i.e., ‖𝑥 − 𝑧‖ > ‖𝑦 − 𝑧‖). Then

P [𝑧 close] = P
[
〈𝑎, 𝑥 − 𝑧〉2 ≤ ‖𝑥 − 𝑦‖2

]
(a)
≤ 2 min

{
1
2
,
‖𝑥 − 𝑦‖
‖𝑥 − 𝑧‖

}
(b)
≤ 2𝛽

min{𝜅(𝑥, 𝑧), 𝜅(𝑧, 𝑦)}
𝜅(𝑥, 𝑦) .

Here (a) is because 〈𝑎, 𝑥 − 𝑧〉 is distributed as a Gaussian with mean 0 and standard deviation ‖𝑥 − 𝑧‖. (b) is
because 𝜅 satisfies Condition 4.1 with 𝑡 = 1.

Claim 2. For any 𝑡 > 1, we have

P
[
(# close vertices not in 𝑒) > 4𝑡𝛽(𝑟 (𝑒) − 1)

𝜅(𝑥, 𝑦)

]
≤ 1

𝑡
.
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Claim 2 follows from applying Markov’s inequality to the number of close vertices not in 𝑒. Here we observe
that

E [# close vertices not in 𝑒]
(c)
≤

∑︁
𝑧∉𝑒

2𝛽
min{𝜅(𝑥, 𝑧), 𝜅(𝑧, 𝑦)}

𝜅(𝑥, 𝑦)
(d)
=

4𝛽(𝑟 (𝑒) − 𝜅(𝑒))
𝜅(𝑥, 𝑦) .

by (c) Claim 1 and (d) definition of 𝑟 (𝑒).

Claim 3. With probability > .68,

|rank𝑖 (𝑥) − rank𝑖 (𝑦) | ≤ 1 + (# 𝑧 close, 𝑧 ∉ 𝑒).

Observe that if 〈𝑎, 𝑥 − 𝑦〉2 < ‖𝑥 − 𝑦‖2, then a vertex 𝑧 has rank between 𝑥 and 𝑦 only if 𝑧 is close. 〈𝑎, 𝑥 − 𝑦〉
is distributed as a centered Gaussian with standard devation ‖𝑥 − 𝑧‖, and a Gaussian deviates by less than its
standard deviation with probability > .68.

With (say) probability > 1/2, then, both the events in Claim 2 (for 𝑡 = 1/.18) and Claim 3 hold. Then

|rank𝑖 (𝑥) − rank𝑖 (𝑦) |
(e)
≤ 1 + 2(# 𝑧 close, 𝑧 ∉ 𝑒)

(f)
≤ 𝑂

(
𝛽𝑟 (𝑒)
𝜅(𝑒)

)
(g)
≤ 𝑂

(
𝛽

(eff. resist. 𝑒)𝜅(𝑒)

)
by (e) Claim 2, (f) Claim 3, and (g) Lemma 4.7, as desired. �

Theorem 4.12. Let 𝜅 : R𝑑 × R𝑑 → R≥0 be a symmetric function satisfying Condition 4.1 with (𝛽, 1)
with 𝛽 ≥ 1. Let 𝑄 denote the time to evaluate 𝜅. Let 𝑉 ⊂ R𝑑 be a set of 𝑛 points. Then with high
probability, randomly-ranked-spectral-sample(𝑉,𝜅,𝛽,𝜖) returns a (1 ± 𝜖)-spectral approximation of 𝐺 𝜅

with 𝑂

(
𝛽𝑛 log2(𝑛)

(
log(𝑛) +𝑄

)
/𝜖2

)
time, one can compute a (1 ± 𝜖)-spectral approximation of 𝐺 𝜅 with

𝑂

(
𝛽𝑛 log2(𝑛)/𝜖2

)
total edges and maximum degree 𝑂

(
𝛽 log2(𝑛)/𝜖2

)
.

Proof. We analyzed the algorithm ranked-importance-sample, given in Figure 3. For each edge 𝑒 = {𝑥, 𝑦} ∈
𝐸 , let

𝑝𝑒 =
𝛽

log 𝑛

𝑘∑︁
𝑖=1

1
|rank𝑖 (𝑥) − rank𝑖 (𝑦) |

.

Claim 1. With high probability, 𝑝𝑒 ≥ 𝜅(𝑒) (eff. resist. 𝑒).

For each 𝑖 ∈ [𝑘], we have

1
|rank𝑖 (𝑥) − rank𝑖 (𝑦) |

≥ 𝜅(𝑒) (eff. resist. 𝑒)
𝑐1𝛽

with probability 𝑐2

by Lemma 4.11, for universal constants 𝑐1, 𝑐2 ∈ (0, 1). In particular, over 2 log(𝑛)/𝑐1𝑐2 samples, the above
holds for at least 2 log(𝑛)/𝑐1 indices 𝑖 in expectation. As the ranks rank𝑖 are independent across 𝑖, the above
holds for log(𝑛)/𝑐1 indices 𝑖 with high probability, in which case we have

𝑝𝑒 =
𝛽

log 𝑛

∑︁
𝑖

1
|rank𝑖 (𝑥) − rank𝑖 (𝑦) |

≥ 𝜅(𝑒) (eff. resist. 𝑒),

as desired.

Claim 2.
∑︁
𝑒∈𝐸

𝑝𝑒 ≤ 𝑂
(
𝛽𝑛 log 𝑛

)
.
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For each 𝑖, we have ∑︁
{𝑥,𝑦 }∈𝐸

1
|rank𝑖 (𝑥) − rank𝑖 (𝑦) |

=
∑︁
𝑥∈𝑉

∑︁
𝑦∈𝑉 where

rank𝑖 (𝑦)>rank𝑖 (𝑥)

1
rank𝑖 (𝑦) − rank𝑖 (𝑥)

=

𝑛∑︁
𝑖=1

𝑛∑︁
𝑗=𝑖+1

1
𝑗 − 𝑖 ≤ 𝑛 log(1 + 𝑛). (15)

Thus ∑︁
𝑒∈𝐸

𝑝𝑒
(a)
=

𝛽

log 𝑛

∑︁
𝑖

∑︁
{𝑥,𝑦 }∈𝐸

1
|rank𝑖 (𝑥) − rank𝑖 (𝑦) |

≤ 𝑂
(
𝛽𝑛 log 𝑛

)
by (a) interchanging sums and (b) substituting the inequality obtained in (15), as desired.

By Lemma 2.1, we importance sample 𝑂

(
𝛽𝑛 log2(𝑛)/𝜖2

)
edges with replacement in proportion to

{𝑝𝑒 : 𝑒 ∈ 𝐸} and produce a (1 ± 𝜖)-spectral approximation with high probability. It is easy to sample in
proportion to {𝑝𝑒 : 𝑒 ∈ 𝐸} in 𝑂

(
log 𝑛

)
time per edge because of the particularly simple and symmetric

structure of the 𝑝𝑒’s4. Each sampled edge requires one kernel evaluation. �

4.5 Generally smooth kernels

In this section, we describe and analyze an algorithm for kernels satisfying Condition 4.1 with parameter 𝑡
greater than 1.

4.5.1 Algorithm

A high-level overview of the algorithm was given in Section 1.3.2. Here we explain the algorithm in detail.
The algorithm is called randomly-projected-spectral-sample(𝑉,𝜅,𝑡,𝛽), abbreviated RPSS(𝑉,𝜅,𝑡,𝛽),
and pseudocode is given in Figure 4.

The sparsification algorithm applies importance sampling (with replacement) to produce a spectral
sparsifier of the kernel graph, applying in particular Lemma 2.1. Most of the algorithmic effort is in
(implicitly) generating estimates of the spectral importance of each edge, in time proportional to the number
of vertices rather than the number of edges.

For a kernel satisfying Condition 4.1 with parameter 𝑡, we repeat the following randomized process
𝑘 = 𝑂

(
𝑒𝑂 (𝑡) log(𝑛)

)
times. For 𝑖 ∈ [𝑘], let 𝜋𝑖 : R𝑑 → R𝑡 be a random projection, where for each output

dimension 𝑗 ∈ [𝑡], we have (𝜋𝑖 (𝑥)) 𝑗 =
〈
𝑎 𝑗 , 𝑥

〉
for a randomly sampled Gaussian vector 𝑎 𝑗 ∼ N𝑑 . We then

build a quadtree over the projected point set {𝜋𝑖 (𝑣), 𝑣 ∈ 𝑉}.
Quadtrees are a simple geometric data structure well-suited for low-dimensional point sets. Here we

give a brief overview and refer the reader to [11, 25] for a more detailed description. A quadtree on R𝑡 is a
hierarchical family of grids on R𝑡 . For each integer ℓ (of interest), it overlays a grid of cells with side length
2ℓ . We call this the grid at level ℓ. The grids across levels ℓ are lined up so that each cell with side length 2ℓ
splits into 2𝑡 cells of length 2ℓ−1 in the next smaller grid at level ℓ − 1. For each cell, we record the number of
points in that cell. The smallest level ℓ included in the quadtree is the largest ℓ such that every point is in its
own cell. The largest level ℓ is chosen to be the smallest ℓ such that every point is contained in the same cell.
Translating the grids appropriately, this can be accomplished so that there are 𝑂

(
log Φ∞

)
levels between the

smallest and largest levels, where Φ∞ is the 𝐿∞-spread of the point set.

4In particular, we generate 𝑖 ∈ [𝑘] uniformly at random, and two distinct indices 𝑗1, 𝑗2 ∈ [𝑛] in proportion to 1/|𝑘1 − 𝑘2 |, in
which case we return the vertices with rank 𝑘1 and 𝑘2 in the 𝑖th embedding.
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randomly-projected-spectral-sample(𝑉,𝜅,𝑡,𝛽)

// Abbreviated RPSS(𝑉,𝜅,𝑡,𝛽)

1. for 𝑖 = 1, . . . , 𝑘 = 𝑂

(
𝑒𝑂 (𝑡) log (𝑛)

)
A. define 𝜋𝑖 : R𝑑 → R𝑡 by (𝜋𝑖 (𝑥)) 𝑗 =

〈
𝑎 𝑗 , 𝑥

〉
for 𝑎 𝑗 ∼ N𝑑

B. build a quadtree over {𝜋𝑖 (𝑣) : 𝑣 ∈ 𝑉} per Lemma 4.13 with 𝐿𝑖 levels.

/* randomly construct a sparse weighted (multi-)graph where edges are importance sampled based on the
quadtrees */

2. let 𝐻 = (𝑉, ∅) be an empty graph over 𝑉, and let 𝛼 = 𝑂

(
log (𝑛)/𝜖2

)
3. repeat 𝑚 = 𝛼𝑛

𝑘∑︁
𝑖=1

𝐿𝑖 times

A. sample 𝑖 ∈ [𝑘] and 𝑥 ∈ 𝑋 uniformly at random

B. sample a level ℓ in the 𝑖th quadtree uniformly at random

C. sample a vertex 𝑦 ∈ 𝐴𝑖 (𝑥, ℓ) uniformly at random // cf. Definition 4.14

D. compute 𝑝(𝑥, 𝑦) =
𝑘∑︁
𝑖=1

∑︁
ℓ: 𝑦∈𝐴𝑖 (𝑥,ℓ)
and 𝑥∈𝐴𝑖 (𝑦,ℓ)

1
|𝐴𝑖 (𝑥, ℓ) |

+ 1
|𝐴𝑖 (𝑦, ℓ) |

E. add edge {𝑥, 𝑦} to 𝐻 with weight 𝜅(𝑥, 𝑦)/𝛼𝑝(𝑥, 𝑦)

4. return 𝐻

Figure 4: Sparsifying a kernel graph for kernels in R𝑑 satisfying Condition 4.1 in �̃� (𝑛𝑑) time.
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Lemma 4.13. Let 𝑋 ⊆ R𝑡 be a set of 𝑛 points with 𝐿∞-spread Φ∞
def
=

max𝑥≠𝑦 ‖𝑥−𝑦 ‖∞
min𝑥≠𝑦 ‖𝑥−𝑦 ‖∞

. The one can build a
shifted quadtree over 𝑋 with 𝑂

(
log(Φ∞)

)
levels in 𝑂

(
𝑛𝑡 log 𝑛 + 𝑛 log Φ∞

)
time.

Once the projected points are placed in a quadtree, we describe their relative placement with the following
terminology.

Definition 4.14. For a fixed quadtree over a projected point set {𝜋𝑖 (𝑣), 𝑣 ∈ 𝑉}, we say that two cells are
adjacent if they are at the same level and are touching (or the same). We say that two vertices are adjacent
at a level ℓ if they are in adjacent cells at level ℓ. We define 𝑨𝒊 (𝒙, ℓ) as the set of vertices adjacent to 𝑥 at
level ℓ in the 𝑖th quadtree.

Let 𝐿 be the total number of levels across all quadtree, and let 𝛼 = 𝑂
(
1/𝜖2) . We build a random graph

𝐻 by sampling 𝑚 = 𝛼𝑛𝐿 edges with replacement based on the quadtree. For each sample, we first select a
vertex 𝑥 ∈ 𝑉 and a trial 𝑖 ∈ [𝑘] uniformly at random. Then we select a level ℓ in the 𝑖th quadtree uniformly at
random. Then we select a vertex 𝑦 ∈ 𝐴𝑖 (𝑥, ℓ) uniformly at random. Clearly it is easy to sample 𝑖 and 𝑥 in
𝑂

(
log 𝑛

)
time. With 𝑂

(
𝑒𝑂 (𝑡)

)
overhead in the preprocessing step, we can augment the quadtree with enough

information to sample 𝑦 ∈ 𝐴𝑖 (𝑥, ℓ) in 𝑂
(
log 𝑛

)
time as well.

12k points
in 2 tile

x

sample Oct
edges in 2 tile

We add the edge {𝑥, 𝑦} to the graph with its weight scaled up as follows. First, observe that {𝑥, 𝑦} is selected
in proportion to the quantity

𝑝(𝑥, 𝑦) =
∑︁

𝐴𝑖 (𝑥,ℓ) 3𝑦

1
|𝐴𝑖 (𝑥, ℓ) |

+
∑︁

𝐴𝑖 (𝑦,ℓ) 3𝑥

1
|𝐴𝑖 (𝑦, ℓ) |

,

which can be computed quickly by, for each 𝑖 ∈ [𝑘], doing a binary search for the first level ℓ where
𝑥 ∈ 𝐴𝑖 (𝑦, ℓ) and 𝑦 ∈ 𝐴𝑖 (𝑥, ℓ). We add the edge {𝑥, 𝑦} with weight 𝜅(𝑥, 𝑦)/𝛼𝑝(𝑥, 𝑦) to 𝐻.

The sampling process we just described is a concrete implementation of the sparsification procedure
described in Lemma 2.1. If 𝑝(𝑒) is an upper bound on (eff. resist. 𝑒)𝜅(𝑒) for all edges 𝑒, then 𝐻 will be a
(1 ± 𝜖)-spectral sparsifier of 𝐺 𝜅 with high probability.

4.5.2 Analysis

Definition 4.15. For an edge 𝑒, the ideal level of 𝑒, denoted ℓ(𝑒), is defined as

ℓ(𝑒) =
⌈
log2‖𝑥 − 𝑦‖

⌉
.

Lemma 4.16. For each 𝑖 ∈ [𝑘], with probability ≥ 𝑒−𝑂 (𝑡) ,

|𝐴𝑖 (𝑥, ℓ(𝑒)) | + |𝐴𝑖 (𝑦, ℓ(𝑒)) | ≤
𝛽𝑒𝑂 (𝑡)

𝜅(𝑒) (eff. resist. 𝑒)
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Proof. For simplicity, we say that points or cells are “adjacent” if in particular they are adjacent at ideal level
ℓ(𝑒). We call a point 𝑧 close if both ‖𝜋(𝑥) − 𝜋(𝑧)‖∞ and ‖𝜋(𝑦) − 𝜋(𝑧)‖∞ are ≤ 5‖𝑥 − 𝑦‖.
Claim 1. For any point 𝑧, we have

P [𝑧 is close] ≤ 4𝑡 𝛽
min{𝜅(𝑥, 𝑧), 𝜅(𝑦, 𝑧)}

𝜅(𝑥, 𝑦) .

Without loss of generality suppose 𝑧 is further from 𝑥 (i.e., ‖𝑥 − 𝑧‖ > ‖𝑦 − 𝑧‖). Then

P [‖𝜋(𝑥) − 𝜋(𝑧)‖∞ ≤ 5‖𝑥 − 𝑦‖] (a)=
𝑘∏
𝑖=1

P
[
〈𝑎𝑖 , 𝑥 − 𝑧〉2 ≤ 5‖𝑥 − 𝑦‖2

]
(b)
≤ min

{
1,

(
5‖𝑥 − 𝑦‖
‖𝑥 − 𝑧‖

)}𝑡
= 5𝑡 min

{
1
5
,
‖𝑥 − 𝑦‖
‖𝑥 − 𝑧‖ ,

‖𝑥 − 𝑦‖
‖𝑧 − 𝑦‖

}𝑡
(c)
≤ 5𝑡 𝛽

min{𝜅(𝑥, 𝑧), 𝜅(𝑦, 𝑧)}
𝜅(𝑥, 𝑦) .

Here (a) is by independence of each embedding. (b) is because each 〈𝑎𝑖 , 𝑥 − 𝑧〉 is distributed as a centered
Gaussian with standard deviation ‖𝑥 − 𝑦‖. (c) is by assumption on 𝜅.

Claim 2. With probability of error < 4−𝑡 , we have (# close vertices) ≤ 20𝑡 𝛽𝑟 (𝑒)
𝜅(𝑒)

We have

P
[
(# close vertices) ≥ 20𝑡 𝛽𝑟 (𝑒)

𝜅(𝑒)

]
(d)
≤ E [# close vertices]𝜅(𝑒)

20𝑡 𝛽𝑟 (𝑒)
(e)
≤

5𝑡
∑

𝑧 min{𝜅(𝑥, 𝑧), 𝜅(𝑦, 𝑧)}
20𝑡 𝜅(𝑥, 𝑦)𝑟 (𝑒)

(f)
≤ 1

4𝑡

by (d) Markov’s inequality, (e) linearity of expectation and Claim 1, and (f) definition of 𝑟 (𝑒).
Claim 3. With probability ≥ 2−𝑡 , we have ‖𝜋(𝑥) − 𝜋(𝑦)‖∞ ≤ ‖𝑥 − 𝑦‖.
We have

P [‖𝜋(𝑥) − 𝜋(𝑦)‖∞ ≤ ‖𝑥 − 𝑦‖] (g)=
𝑡∏

𝑖=1
P [|〈𝑎𝑖 , 𝑥 − 𝑦〉| ≤ ‖𝑥 − 𝑦‖]

(h)
≥

(
1 −

√︁
2/𝑒𝜋

) 𝑡
> 2−𝑡 .

Here (g) is because each 𝑎𝑖 ∼ N𝑑 is drawn independently. (h) applies Lemma 4.9 to 〈𝑎𝑖 , 𝑥 − 𝑦〉, which is
distributed as a centered Gaussian with standard deviation ‖𝑥 − 𝑦‖ (Lemma 4.10).

Claim 4. If ‖𝜋(𝑥) − 𝜋(𝑦)‖∞ < ‖𝑥 − 𝑦‖, and a point 𝑧 is adjacent to 𝑥 and 𝑦, then 𝑧 is close.

Indeed, suppose ‖𝜋(𝑥) − 𝜋(𝑦)‖∞ < ‖𝑥 − 𝑦‖, and let 𝑧 be adjacent to 𝑥. Then

‖𝜋𝑖 (𝑥) − 𝜋𝑖 (𝑧)‖∞ ≤ 2 · 2ℓ (𝑒) ≤ 4‖𝑥 − 𝑦‖,

and

‖𝜋𝑖 (𝑦) − 𝜋𝑖 (𝑧)‖∞ ≤ ‖𝜋𝑖 (𝑥) − 𝜋𝑖 (𝑦)‖∞ + ‖𝜋𝑖 (𝑥) − 𝜋𝑖 (𝑦)‖∞ ≤ 5‖𝑥 − 𝑦‖.

In particular, 𝑧 is close. Symmetrically, if 𝑧 is instead adjacent to 𝑦, 𝑧 is again close.
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X

To complete the proof, we have that with probability of success ≥ 𝑒−𝑂 (𝑡) , both Claim 2 and Claim 3 hold.
Then (

# points adjacent
to 𝑥 or 𝑦

)
(i)
≤ (# close vertices)

(j)
≤ 𝛽𝑒𝑂 (𝑡)𝑟 (𝑒)

𝜅(𝑒)
(k)
≤ 𝛽𝑒𝑂 (𝑡)

𝜅(𝑒) (eff. resist. 𝑒) ,

as desired. Here (i) is by Claim 4, (j) is by Claim 2, and (k) is by Lemma 4.7. �

Theorem 4.17. With high probability, RPSS returns a weighted graph 𝐻 that is
a (1 ± 𝜖)-spectral sparsifier of 𝐺 𝜅 and has 𝑂

(
𝑛𝛽𝑒𝑂 (𝑡) log(𝑛) log(Φ)/𝜖2

)
edges in

𝑂

(
𝑛
(
log(Φ) + log(𝑛)

) (
log(𝑛) + log log(Φ) +𝑄

)
𝑒𝑂 (𝑡)/𝜖2

)
randomized time.

Proof. For each 𝑒 ∈ 𝐸 , and each trial 𝑖 ∈ [𝑘], define

𝑝𝑒 =
𝛽𝑒𝑂 (𝑡)

log 𝑛

∑︁
𝑖

∑︁
levels ℓ

(
1

|𝐴𝑖 (𝑥, ℓ) |
+ 1
|𝐴𝑖 (𝑦, ℓ) |

if 𝑒 ⊆ 𝐴𝑖 (𝑥, ℓ) ∩ 𝐴𝑖 (𝑦, ℓ)
)
.

Claim 1. For all 𝑒 ∈ 𝐸 , with high probability, 𝑝(𝑒) ≥ (eff. resist. 𝑒)𝜅(𝑒).

Fix 𝑒 = {𝑥, 𝑦} ∈ 𝐸 . By Lemma 4.16, for each trial 𝑖, we have

𝑦 ⊆ 𝐴𝑖 (𝑥, ℓ(𝑒)), 𝑥 ∈ 𝐴𝑖 (𝑦, ℓ(𝑒)), and
1

|𝐴𝑖 (𝑥, ℓ) |
+ 1
|𝐴𝑖 (𝑦, ℓ) |

≥ 𝑒−𝑂 (𝑡)

𝛽
𝜅(𝑒) (eff. resist. 𝑒) (16)

with probability ≥ 𝑒−𝑂 (𝑡) . Over 𝑘 = 𝑂

(
𝑒𝑂 (𝑡) log(𝑛)

)
independent trials, the event (16) occurs at least

2 log(𝑛) times in expectation, and at least log(𝑛) times with high probability. When the latter occurs, we have
𝑝𝑒 ≥ 𝜅(𝑒) (eff. resist. 𝑒).

Claim 2.
∑︁
𝑒∈𝐸

𝑝𝑒 ≤
𝛽𝑒𝑂 (𝑡)𝑛

log 𝑛

(
total # levels over

all quadtrees

)
.

For each 𝑖, we have ∑︁
{𝑥,𝑦 }∈𝐸

∑︁
ℓ

(
1

|𝐴𝑖 (𝑥, ℓ) |
+ 1
|𝐴𝑖 (𝑦, ℓ) |

if {𝑥, 𝑦} ⊆ 𝐴𝑖 (𝑥, ℓ) ∩ 𝐴𝑖 (𝑦, ℓ)
)

(a)
=

∑︁
𝑥

∑︁
ℓ

∑︁
𝑦∈𝐴𝑖 (𝑥,ℓ)

1
|𝐴𝑖 (𝑥, ℓ) |

=
∑︁
𝑥

∑︁
ℓ

1 = 𝑛

(
# levels in the
𝑖th quadtree

)
.

where (a) interchanges sums. Summing up the above equality over all 𝑖 and then multiplying both sides by
𝛽𝑒𝑂 (𝑡)/log 𝑛 gives the desired inequality.
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Claim 3. With high probability, for all 𝑖, we have

log
(
max𝑥,𝑦 ‖𝜋𝑖 (𝑥) − 𝜋𝑖 (𝑦)‖∞
min𝑥,𝑦 ‖𝜋𝑖 (𝑥) − 𝜋𝑖 (𝑦)‖∞

)
≤ log(Φ) +𝑂

(
log 𝑛

𝑡

)
.

To prove Claim 3, fix 𝑖. Let 𝛿0 = min𝑥≠𝑦 ‖𝑥 − 𝑦‖ be the minimum distance between any two points, and let
𝛿1 = max𝑥≠𝑦 ‖𝑥 − 𝑦‖ be the maximum distance. For any two points 𝑥 and 𝑦, each coordinate of 𝜋𝑖 (𝑥) − 𝜋𝑖 (𝑦)
is distributed as a Gaussian with mean 0 and standard deviation ‖𝑥 − 𝑦‖. For any 𝛼 > 1, we have

P [‖𝜋𝑖 (𝑥) − 𝜋𝑖 (𝑦)‖∞ ≥ 𝛼𝛿1] ≤
√

2
𝛼
√
𝜋
𝑒−𝛼

2/2.

In particular, for 𝛼 = 𝑂

(√︁
𝑡 log 𝑛

)
, we have

P
[
‖𝜋𝑖 (𝑥) − 𝜋𝑖 (𝑦)‖∞ ≥ 𝑂

(√︁
𝑡 + log 𝑛

)
𝛿1

]
≤ 𝑒−𝑂(𝑡+log 𝑛) .

On the other hand, for any 𝛼 < 1, we have

P [‖𝜋𝑖 (𝑥) − 𝜋𝑖 (𝑦)‖∞ ≤ 𝛼𝛿0] ≤
(
𝛼

√︂
2
𝜋

) 𝑡
.

For 𝛼 = 𝑛−𝑂 (1/𝑡) , we have

P
[
‖𝜋𝑖 (𝑥) − 𝜋𝑖 (𝑦)‖∞ ≤ 𝛿0/𝑛𝑂 (1/𝑡)

]
≤ 𝑒−𝑂(𝑡+log 𝑛) .

Taking a union bound over all 𝑛2 pairs, we have

P
[
max𝑥,𝑦 ‖𝜋𝑖 (𝑥) − 𝜋𝑖 (𝑦)‖∞
min𝑥,𝑦 ‖𝜋𝑖 (𝑥) − 𝜋𝑖 (𝑦)‖∞

≥ 𝑂

(
𝑛𝑂 (1/𝑡)

√︁
𝑡 + log 𝑛

)
Φ

]
≤ 𝑒−𝑂(𝑡+log 𝑛) .

Taking the union bound over all 𝑖, we have that the above holds for all 𝑖 with probability of error ≤ 𝑒−𝑂(𝑡+log 𝑛) .
This proves Claim 3.

With high probability, both Claim 1 (for all 𝑒 ∈ 𝐸) and Claim 3 hold. Then each quadtree
has height 𝑂

(
log(Φ) + log(𝑛)/𝑡

)
, and the total number of levels across all quadtrees is at most

𝑂

(
𝑒𝑂 (𝑡) log(𝑛)

(
log(Φ) + log(𝑛)

) )
. By Claim 2 we have∑︁
𝑒∈𝐸

𝑝(𝑒) ≤ 𝛽𝑒𝑂 (𝑡)𝑛
(
log(Φ) + log(𝑛)

)
.

The desired graph 𝐻 now follows from Lemma 2.1.
As per the running time, in the high probability event of success, each quadtree takes

𝑂

(
𝑛𝑑𝑡 + 𝑛

(
log(Φ) + log(𝑛)

)
𝑒𝑂 (𝑡)

)
time to build, and there are 𝑘 = 𝑂

(
𝑒𝑂 (𝑡) log(𝑛)

)
many quadtrees. Thus all

the quadtrees take 𝑂
(
𝑛
(
𝑑 + log(Φ) + log(𝑛)

)
𝑒𝑂 (𝑡) log(𝑛)

)
time to build. We sample 𝑂

(
log(𝑛)∑𝑒 𝑝𝑒/𝜖2) =

𝑂

(
𝑛
(
log(Φ) + log(𝑛)

)
𝛽𝑒𝑂 (𝑡)/𝜖2

)
edges, and each edge sample takes 𝑂

(
𝑡 + log(𝑛) + log log(Φ) +𝑄

)
time

between sampling the edge and evaluating the kernel. Thus the overall running time is dominated by the
sampling step, and is

𝑂

(
𝑛
(
log(Φ) + log(𝑛)

) (
log(𝑛) + log log(Φ) +𝑄

)
𝑒𝑂 (𝑡)/𝜖2

)
,

as desired. �
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4.6 Density queries

In this section, we consider the problem of kernel density estimation. The density estimation problem
is discussed extensively in Section 1.2 and an important primitive for many kernel-based computational
problems. The problem is posed as a data structure problem and we recall the setup. Let 𝑉 ⊆ R𝑑 be a fixed
point set. We want to process 𝑉 to efficiently serve queries of the following form. Given a point 𝑞 ∈ R𝑑 ,
compute the sum ∑︁

𝑣∈𝑉
𝜅(𝑞, 𝑣). (17)

Following previous work, we seek a (1 ± 𝜖)-relative approximation to the above with high probability.
[4] gave the following bounds for an essentially similar notion of smoothness. [4] showed that with

𝑂

(
𝑛
(
𝑑 + log(𝑛) + log(Φ)

)
log(𝑛)𝑒𝑂 (𝑡)/𝜖2

)
space and preprocessing time, one can construct a data structure that computes (1 ± 𝜖)-multiplicative
approximations to (17) in

𝛽𝑒𝑂 (𝑡) log(𝑛)
(
log(𝑛) + log(Φ) + 𝑑

)
/𝜖2

time. The significance of these bounds is discussed in Section 1.2.
We describe an alternative data structure for the kernel density estimation problem which falls out naturally

from the spectral sparsifier construction. The high level ideas are discussed Section 1.3.2, which we briefly
review. The sum in (17) can be interpreted as the weighted degree of the kernel graph of 𝑉 + 𝑞. Since the
weighted degree is the singleton cut of {𝑞}, it is preserved by the spectral sparsifiers constructed in this work.
Thus one algorithm to approximate (17) is to build the spectral sparsifier of Section 4.5 over 𝑉 + 𝑞, and then
return the weighted degree of 𝑞. Of course, an entire spectral sparsifier, and in particular, the effort to sparsify
the edges between 𝑉 , is unnecessary.

Theorem 4.18. With 𝑂

(
𝑛
(
𝑑 + log(𝑛) + log(Φ)

)
log(𝑛)𝑒𝑂 (𝑡)

)
space and preprocessing time, one can build a

data structure that computes (1 ± 𝜖)-approximate to (𝛽, 𝑡)-smooth kernel density queries with high probability
(for each query) in

𝑂

(
𝛽𝑒𝑂 (𝑡)

(
log(𝑛) + log(Φ)

) (
log(𝑛) + log log(Φ) +𝑄

)
/𝜖2

)
time.

Proof. We build a family quadtrees over random projections of 𝑉 onto R𝑡 as in Section 4.5. Upon a query 𝑞,
we add the cells corresponding to the projections of 𝑞 to the many quadtree. We then sample edges incident
to 𝑞 as in the construction of Section 4.5. Repeatedly, we uniformly sample a quadtree and a cell containing 𝑞.
We select a point 𝑣 uniformly at random from those adjacent to 𝑞. We then include 𝜅(𝑥, 𝑦), scaled in inverse
proportion to the total number of vertices adjacent to 𝑞 at that level in that quadtree. The analysis of this data
structure is essentially the same as the analysis in Section 4.5, and therefore omitted. Here one can bypass the
matrix concentration inequalities and instead apply standard Chernoff bounds, as we are only concerned with
estimating a single sum.

As described above, we require 𝑂

(
𝑛
(
𝑑 + log(Φ) + log(𝑛)

)
𝑒𝑂 (𝑡) log(𝑛)

)
to construct the

quadtrees over random projections of 𝑉 . The space, beyond the original input
points, is 𝑂

(
𝑛
(
𝑑 + log(Φ) + log(𝑛)

)
𝑒𝑂 (𝑡) log(𝑛)

)
on account of the quadtrees. We also
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need 𝑂

( (
log(Φ) + log(𝑛)

)
𝛽𝑒𝑂 (𝑡)/𝜖2

)
samples for each query 𝑞, and each sample takes

𝑂
(
𝑡 + log(𝑛) + log log(Φ) +𝑄

)
between sampling the point and then evaluating the kernel. �

For error probability ≤ 1/poly(𝑛), the preprocessing and space bounds of Theorem 4.18 improve that of
[4] by a 𝑂

(
1/𝜖2)-multiplicative factor. The query time bounds are fairly similar although the dependence

on 𝑄 here is less by a log(𝑛) factor. (A factor of log(𝑛)𝑄 in [4] is replaced by
(
log(𝑛) + log log(Φ) +𝑄

)
here.) We note that [4] also give bounds independent of spread for a subclass of smooth kernels that we do
not provide here.
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