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Geometric graph problems

nodes points

edges _distances

or some functionof

many natural graph problems

goal input size 0Th time

n points

Obvious bottleneck

graph dense size 0h2

no time to construct graph



e g degrees

graphs metic
what is weighted what is sum of distances

degree of v from v to all other vertices

trivial problem in graphs

sub linear time approximations in metrics

Indyk 99 Chechik Cohen Kaplan 15

Esfandiari Mitzenmacher 18

Replacing metric w kernel function K

e.g Kex y WITH x y112

density estimation
Low dimensions Greengard Rokhlin Jr

High dimensions Holmes Gray Isbell Jr 07

Siminelakis Charikar 17 Backurs et al M



Other natural problems e.g

Max cut I 97 EM 18 for metrics

total sum of distances I 97 CCK IS EM 18
for metrics

min cut

sparsest cut

graph embeddings



Broad question
can we approximate geometricgraphs
in 0Th time in some general sense

Inspiration
Spanners in low dimensional Rd

sparse subgraphs where shortest path
metric approximates original metric

Salowe 91 Vaidya 91 Callahan Kosaraju 927

What about other structures



The Laplacian
Quadratic form PSD matrix LG
associated w graph GIV E

x Lox E nee Xu xD
EEE
e u v

Applications week weight of e

Encodes all cuts

eigenvectors embeddings
spectral clustering graph partitioning
see leg notes by Spielman Trevisan



Sparsifying Laplacian
Input graph G w Laplacian LG

feweredges
Goal smaller graph H w LaplacianLAST

99 x LGX E LX LAX E 1.01 ex Lox
I E HE For all

Edges in H Time

Spielman Teng 04 Ocnpolylogen 8cm

Spielman Srivastava 08 OCnlogCn 0cm
Batson Spielman
Srivastava 09 Ocn O polycm

Lee Sun 17 Ocn 8cm

many more related results



Geometric graphs Laplacians

The Laplacian of any geometric graph
can be approximated w 0Th edges

Beat 8cm time graph algorithm
07h27 time geometric algorithm

Question Can we approximate

geometric Laplacians in 8cm time

Primarycontribution Yes

for metrics smooth kernels

more detailed bounds later

High level approach
Quick and sometimessimple randomized
estimates of effective resistance by sampling
importance sample edges wlrH
effective resistances per Spielman Srivastava



Related independent work

Algorithms and Hardness for

Linear Algebra and Geometric Graphs

by Alman Chu Schild song



Geometric graphs Laplacians

The Laplacian of any geometric graph
can be approximated w 0Th edges

Beat 8cm time graph algorithm
07h27 time geometric algorithm

Question Can we approximate

geometric Laplacians in 8cm time

Primarycontribution Yes

for metrics smooth kernels

more detailed bounds later

High level approach
Quick and sometimessimple randomized
estimates of effective resistance by sampling
importance sample edges wlrH
effective resistances per Spielman Srivastava



Effective Resistance a brief primer

for edge e is is let Le Laplacian of Conly edge e

e.g Ex Lex Exa Xvi
for graph G CV E

t.GE WCe Le
Effective resistance measures importance of Le

left resist e Myx
eX

Ex LGX

Given effective resistances one can

importance sample edges e.EE in proportion
to

weight e Neff resist e

To obtain spectral sparsifier

upper bounds approximations suffice



Metrics
A theorem and a simple algorithm



Theorem G CVE

w edge weights di EHR o forming a metric

Let D
ee
dCe total sum of distances

Then for all ee E

effective resistance of e E 04
r

Now suppose we use upper bound

when sampling
a uniformity sampling proportional

to edge lengths

6 the fact that

e
de f n

d
n

the upper bound is tight enough
to produce sparse graphs



Given theorem remains to estimate

edge lengths for sampling Crude

upper bounds suffice

Mitzenmacher Esfandiari subroutine gives
estimates w Ochlogh queries

we provide simpler alternative
w Ochlogn queries

uniformly sample query Ochlogn edges

sum up for each vertex the lengths
of incident edges that were sampled

for each edge use sum of endpoints
divided by login as estimate

Easy to sample w these estimates



A simple algorithm in hindsight

uniformly sample edges to get
weak estimates on edge lengths

Importance sample OchlogCDIE
2

edges wht estimates

Key point Theorem about eff resist

permits simple sampling



Smooth kernels in IBD

simplifying
Ktx y decaying polynomially in th yH

e.g Ktx y 1t yH I smooth

KCHY 1 17,112 2 smooth

classically in low dimensions
fast multipole method

Recent interest in high dimensions from ML



Simple algorithm for 2 smooth kernels

e g Klay ItHx

intermediate quick and small upper bounds on
Goal left resist e Kde for all eEE

Theorem let a Nd be random Gaussian vector
rank VEV in increasing order of La v

n 3 6 72 10

4

7
I g

s
8

for all e Ex y EE I
left resist e Kce E 047 Iranked rankly1

w constant probability



Algorithmic consequences

Ollogn random rankings
upper bounds w high probability

the fact that
trankxtry E Ochlogh

upper bounds tight enough to

produce sparse graph

Thus the algorithm is
a project Odogn times Odog n rankings
6 importance sample Ochlogen edges

in proportion to
040gn l
E
it 1rankGd rank471

for edge e Ex y



f smooth kernels HID

e g Klay 151

Similar highlevel idea

project into Oct dimensions instead of 1

use quad trees to avoid all to all

computations

Overall running time very roughly

0ThCdt 15

where Q denotes query to Kay
8cm also hides expon dep on t



Byproduct density queries

Density queries correspond to weighted degrees

Preserving entire Laplacian is overkill
But by skipping unneeded steps
data structure competitive w

in fact slightly improving
state of the art Backurs et al


